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Abstract

Diagnosis, treatment, and prevention of vector-borne disease (VBD) in pets is one corner-
stone of companion animal practices. Veterinarians are facing new challenges associated
with the emergence, reemergence, and rising incidence of VBD, including heartworm disease,
Lyme disease, anaplasmosis, and ehrlichiosis. Increases in the observed prevalence of these
diseases have been attributed to a multitude of factors, including diagnostic tests with
improved sensitivity, expanded annual testing practices, climatologic and ecological changes
enhancing vector survival and expansion, emergence or recognition of novel pathogens,
and increased movement of pets as travel companions. Veterinarians have the additional
responsibility of providing information about zoonotic pathogen transmission from pets,
especially to vulnerable human populations: the immunocompromised, children, and the eld-
erly. Hindering efforts to protect pets and people is the dynamic and ever-changing nature of
VBD prevalence and distribution. To address this deficit in understanding, the Companion
Animal Parasite Council (CAPC) began efforts to annually forecast VBD prevalence in
2011. These forecasts provide veterinarians and pet owners with expected disease prevalence
in advance of potential changes. This review summarizes the fidelity of VBD forecasts and
illustrates the practical use of CAPC pathogen prevalence maps and forecast data in the
practice of veterinary medicine and client education.

Introduction

Over the last several decades, health care providers, scientists, and public health officials have
observed a disconcerting trend in infectious diseases: the emergence and reemergence of
numerous pathogens. Emerging pathogens are those that appear in a new population or
those that display increasing incidence in an existing population (Woolhouse and
Gowtage-Sequeria, 2005). Among infectious pathogens, zoonotic pathogens are roughly 1.9
times more likely to be emerging than non-zoonotic pathogens; vector-borne pathogens are
about 2.3 times more likely to be emerging than non-vector-borne pathogens (Taylor et al.,
2001). A number of factors are thought to contribute to the increasing incidence of diseases
caused by vector-borne pathogens. These include (1) warmer winters and other temperature
and humidity alterations that are occurring as a result of climate change (Eisen et al.,
2015), (2) suburbanization, which brings people, wildlife, domestic animals, and pathogens
together, (3) an increase in white-tailed deer or other wildlife species that support ticks
and/or serve as reservoirs of infection, (4) migratory birds that carry ticks or pathogens to
new areas, (5) the modern emphasis on the preservation of open space and the replanting
of trees, and (6) the reduced use of insecticides (Loh et al., 2015). These factors are dynamic;
as a result, it is expected that the incidence, prevalence, and spatial distribution of vector-borne
disease (VBD) will continue to change.

This changing nature of VBDs makes the surveillance of disease incidence and prevalence
an integral part of prevention and control. In the United States (US), monitoring human
VBDs is generally conducted through formal state and national surveillance systems
(National Notifiable Diseases Surveillance System (NNDSS), Centers for Disease Control
and Prevention), giving health care providers invaluable information to direct interventions,
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preventative care measures, and public education. In contrast,
although US veterinarians observe several of the same VBD
agents in domestic dogs (including, but not limited to, Borrelia
burgdorferi, Anaplasma phagocytophilum, Ehrlichia chaffeensis,
and E. ewingii), none of these pathogens (in dogs) are currently
nationally notifiable and state-level requirements vary. In the
absence of a formal surveillance system, many veterinarians
rely on available animal health industry data to assess the infec-
tion prevalence. Since 2011, the Companion Animal Parasite
Council (CAPC) has worked collaboratively with IDEXX
Laboratories, Inc. and Antech Diagnostics to assemble a diagnos-
tic test result database from practicing veterinarians. From these
data, CAPC provides prevalence (proportion of animals that
test positive in a given place and time period; seroprevalence is
defined in this manuscript as the proportion of animals with posi-
tive antibody tests) maps at the county, state, and national levels
for both zoonotic and non-zoonotic pathogens of companion ani-
mals: B. burgdorferi, Ehrlichia spp., Anaplasma spp., Dirofilaria
immitis, and Giardia spp. for dogs; and D. immitis, Giardia
spp., Feline Leukemia Virus, and Feline Immunodeficiency
Virus for cats. Results from centrifugal fecal flotation examina-
tions (roundworms, hookworms, and whipworms) for both
dogs and cats are also reported (Companion Animal Parasite
Council, 2018). The prevalence maps provide local and regional
surveillance data to veterinarians and scientists alike, facilitating
evidence-based medicine and informing research. The known
association between canine and human VBD (Mead, 2015; Liu
et al., 2019) highlights the importance of these maps in the
One Health framework. Of the above listed pathogens, B. burgdor-
feri, A. phagocytophilum, E. chaffeensis and E. ewingii account for
the highest number of reported cases of human tick-borne disease
in the US (Rosenberg et al., 2018). Surveillance of these pathogens
in pets helps protect both animals and people.

Of all the aforementioned pathogens for which prevalence data
are available, four canine pathogens have datasets that are robust
enough to perform annual forecasting: D. immitis, Anaplasma
spp., Ehrlichia spp., and B. burgdorferi. The forecasting methods
use both the historical prevalence and other environmental factors
theorized to influence vector survival and exposure to VBD
pathogens (Bowman et al., 2016; Watson et al., 2017; Liu et al.,
2017a, 2017b). Monthly and annual updates to the prevalence
and forecast maps, respectively, are imperative to adequately
understand exposure risk. Similar to prevalence maps, all forecast
maps are free to the general public, veterinarians, and scientists
at www.petsandparasites.org/parasite-prevalence-maps or https://
capcvet.org/maps.

This review summarizes the prevalence maps and the model-
ing used to create annual forecast maps for B. burgdorferi,
Ehrlichia spp., Anaplasma spp., and D. immitis and extends ori-
ginal discussions to include a description of the development
and fidelity of annual forecast maps. Importantly, the goal of
this review is to describe the use of forecast maps to the practicing
veterinarian for the purpose of client education and evidence-
based decision-making. A discussion of the importance of these
forecast maps, their intended use, and how they can aid the prac-
ticing veterinarian in preventative medicine is presented.

Parasite prevalence maps

CAPC receives monthly data from IDEXX Laboratories, Inc. and
Antech Diagnostics and presents it to the public in the form of
interactive maps (Companion Animal Parasite Council, 2018).

The maps display the proportion of animals that test positive
among all animals tested within a given county for a given period
(month or year). Maps are available for D. immitis (antigen),
Ehrlichia spp., Anaplasma spp., and B. burgdorferi exposure and
infections in dogs; D. immitis (antigen and antibody), Feline
Immunodeficiency Virus (antigen), and Feline Leukemia Virus
(antibody) infections in cats; and intestinal parasites in both
dogs and cats, including Toxocara spp., Ancylostoma spp.,
Trichuris spp., and Giardia spp. Data are available for the US
and Canada and are updated monthly from January 2012 through
the present. Importantly, data can be viewed for the annual or
monthly periods at the national, state/province, or county/
county-equivalent level (within the US), allowing veterinarians
to provide local, regional, and national expertise on pathogen
prevalence for their clients. These data are intended to describe
the prevalence of parasites in a given locality, but as with any sur-
vey, the results can be influenced by a number of factors, includ-
ing the number of pets tested, the history of the pets prior to
testing, the reason the pets were tested, and the assays used.
Understanding each of these factors is important when inferring
the geographic distribution of these disease agents. Factors that
can influence data interpretation are described at https://www.
capcvet.org/articles/under-standing-the-maps-key-factors-that-
influence-the-results/. Details on the pathology, diagnostics, and
epidemiology of these pathogens are beyond the scope of this
review and many excellent references are available for more infor-
mation (Little, 2010; Little et al., 2010; Greene, 2012; Allison and
Little, 2013; Bowman, 2014; Maggi et al., 2014; Qurollo et al.,
2014; Sykes, 2014; Littman et al., 2018).

To ensure that prevalence estimates are not unduly influenced
by test quality, data used for the prevalence maps meet stringent
inclusion criteria. Antibody tests for the tick-borne disease agents
(B. burgdorferi, Ehrlichia spp., and Anaplasma spp.) must have a
minimum sensitivity of 90% and a minimum specificity of 90%.
CAPC also requires that the in-clinic tests used by veterinarians
to acquire data be externally validated via approval by the US
Department of Agriculture (USDA). Information regarding
USDA regulation of diagnostic tests can be found at http://www.
aphis.usda.gov/animal_health/vet_biologics/publications/pel_4_7.pdf.
For heartworm infection, a minimum sensitivity of 90% and a
minimum specificity of 90% are required for all antigen tests.
Because the sensitivity of some heartworm antigen tests declines
at lower worm burdens, the 90% sensitivity requirement applies
only when three or more adult female worms are present
(Atkins, 2003). Similar to antibody test inclusion criteria, CAPC
requires that heartworm antigen tests be approved by the
USDA. Intestinal parasite data are acquired via fecal flotation.
The roundworm, hookworm, and whipworm data are acquired
via centrifugal fecal flotation. Because sensitivity and specificity
are variable, all fecal results that follow the procedures, which
include centrifugation and minimum sample size of 1 g, are
accepted. The resultant data should be interpreted under these
limitations.

Forecast maps

CAPC uses historical VBD prevalence data along with established
climatological and ecological drivers of disease to construct
annual forecast maps that display the expected prevalence of sero-
positive animals for the upcoming year for each of the four VBD
pathogens described above. Annual forecast efforts began in 2011,
with the first forecast based on the Bayesian spatio-temporal
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Poisson regression model (described below) delivered in 2016.
Additional details are available in Bowman et al. (2016), Liu
et al. (2017a, 2017b), and Watson et al. (2017).

Data

The data used to forecast are the same as those used in the preva-
lence maps. Data are obtained as aggregated counts of positive
tests or total tests by county and month. These data can be
seen in each of the raw prevalence maps (Figs. 1a, 2a, 3a, and
4a). Counts of positive tests and total tests performed in a given
county from 2012 through 2018 were summed. The proportion
of all positive tests to total tests in a given county is the overall
prevalence for that time period. Heartworm antigen test results
are obtained from IDEXX Laboratories, Inc. (SNAP®
Heartworm RT Test, SNAP® 4Dx® Plus Test, and PetChek®
Heartworm PF Antigen Test) and Antech Diagnostics
(DiroCHEK® Heartworm Antigen Test and AccuPlex4 heartworm
antigen detection assay). The remaining data are obtained from
IDEXX (SNAP® 4Dx® Plus Test). Data are collected both from
tests performed at the reference laboratories and from clinics
that are connected to the laboratories via clinic practice manage-
ment software. No measure of uncertainty is given for any test.
Travel, disease, and testing histories of the dogs are also not avail-
able. Roughly half of the 3109 counties, boroughs, parishes, and
other county-equivalent areas in the US do not report any tests
in a given year; in contrast, some highly populated counties report
thousands of tests annually. More details on the data can be found
in Bowman et al. (2016); Liu et al. (2017a, 2017b), and Watson
et al. (2017).

Covariates

The statistical model described in the next section uses many
putative risk factors to improve the annual prevalence forecasts.
Eight risk factors (covariates or predictor variables) are consid-
ered: annual mean temperature, annual mean precipitation,
annual mean relative humidity, elevation, percent forest coverage,
percent water coverage, population density, and median house-
hold income. The listed factors were previously selected based
on similar models. See Wang et al. (2014) for more information.
Most of these factors are available to a county spatial resolution.
In addition to these eight factors, the heartworm forecast also
uses the presence/absence of eight mosquito species: Aedes albo-
pictus, A. aegypti, A. canadensis A. sierrensis, A. trivittatus,
Anopheles punctipennis, Anopheles quadrimaculatus, and Culex
quinquefasciatus.

Data for the proposed risk factors were obtained from a variety
of sources. Sources for all forecasts made up to 2017 are discussed
in Wang et al. (2014). The forecast models are updated annually.
As such, covariate data sources are periodically updated. This
occurs for multiple reasons: prior sources become unavailable,
data accuracy or spatio-temporal resolution is improved, new
knowledge is gained about potential risk factors, or data acquisi-
tion becomes easier. In an effort to provide the most reliable and
up to date information, covariate sources were updated for our
2018 and 2019 forecasts presented below.

As one would expect, changing covariate sources can change
the significance level of the individual covariates and the forecast.
However, the changes are usually not large. For clarity, the signifi-
cance of factors based on 2011–2015 data will be reported. These

years are chosen to be consistent with the data used in publica-
tions for each pathogen: B. burgdorferi (Watson et al., 2017),
Anaplasma spp. (Liu et al., 2017b), Erhlichia spp. (Liu et al.,
2017a), and heartworm (Bowman et al., 2016). These studies
used the most recent data available at the time of publication.
For B. burgdorferi and Anaplasma spp., elevation, percent forest
coverage, and percent water coverage are positively related to
prevalence; annual temperature and population density are nega-
tively related to prevalence; annual precipitation, annual relative
humidity, and median household income are statistically insignifi-
cant. For Ehrichlia spp., annual temperature, percent forest cover-
age, and percent water coverage are positively related to prevalence;
population density and median household income are negatively
related to prevalence; and annual precipitation, annual relative
humidity, and elevation are insignificant. For heartworm, annual
temperature, annual relative humidity, and percent forest coverage
are positively related to prevalence; population density, median
household income, and presence of A. albopictus are negatively
related to prevalence; and annual precipitation, elevation, percent
water coverage, and presence of A. aegypti, A. canadensis
A. sierrensis, A. trivittatus, A. punctipennis, A. quadrimaculatus,
and C. quinquefasciatus are insignificant.

Forecast model

This technical section describes the statistical methods used in
making the forecasts. For notation, let Yst and nst denote the num-
ber of positive and total tests reported in county s during year t,
respectively. In general, counties that are geographically close to
each other often report a similar prevalence. Similarly, a fixed
county tends to report a similar disease prevalence in consecutive
years. These phenomena entail positive spatio-temporal correl-
ation and need to be accounted for in an accurate statistical ana-
lysis (Besag, 1974; Martínez-Beneito et al., 2008; López-Quilez
and Munoz, 2009; Banerjee et al., 2014).

Our forecast model is Bayesian and accounts for spatio-
temporal dependence using random effects as described below.
In the model, the number of positive tests in each county and
year is assumed to conditionally follow a Poisson distribution,
which is a common choice for modeling count data
(Martínez-Beneito et al., 2008; López-Quilez and Munoz, 2009).
Specifically, Yst is assumed to be statistically distributed as

Yst|nst, pst � Poisson(nstpst), (1)

where

log ( pst) = b0 +
∑p
k=1

bkXkst + jst, (2)

where Xkst is the kth covariate at county s and time t, βk is the cor-
responding regression coefficient, pst is the prevalence, and ξst are
the spatio-temporal random effects. Equation (1) posits that the
number of positive tests Yst, given the number of tests conducted
nst and the prevalence pst, follows a Poisson distribution with
mean nstpst.

There are many model choices for the spatio-temporal random
effects. Perhaps the most popular for spatial data is the condi-
tional autoregression (CAR) model (Banerjee et al., 2014),
which is used here. Spatial and temporal dependence is modeled
by embedding a CAR model in the following first-order temporal

Animal Health Research Reviews 3



Fig. 1. Raw canine Borrelia burgdorferi prevalence aggregated by county from 2012 through 2018 and forecasted B. burgdorferi prevalence for 2019. Counts for
positive tests and for total tests performed in a given county from 2012 through 2018 were summed. The proportions of all positive tests to total tests in a
given county are shown in (a). The expected seroprevalence of B. burgdorferi in 2019 is shown in (b).
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Fig. 2. Raw canine Anaplasma species prevalence aggregated by county from 2012 through 2018, and forecasted Anaplasma spp. prevalence for 2019. Counts for
positive tests and for total tests performed in a given county from 2012 through 2018 were summed. The proportions of all positive tests to total tests in a given
county are shown in (a). The expected seroprevalence of Anaplasma spp. in 2019 is shown in (b).
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Fig. 3. Raw canine Ehrlichia species prevalence aggregated by county from 2012 through 2018, and forecasted Ehrlichia spp. prevalence for 2019. Counts for positive
tests and for total tests performed in a given county from 2012 through 2018 were summed. The proportions of all positive tests to total tests in a given county are
shown in (a). The expected seroprevalence of Ehrlichia spp. in 2019 is shown in (b).
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Fig. 4. Raw canine heartworm prevalence aggregated by county from 2012 through 2018, and forecasted heartworm prevalence for 2019. Counts for positive tests
and for total tests performed in a given county from 2012 through 2018 were summed. The proportions of all positive tests to total tests in a given county are
shown in (a). The expected prevalence of heartworm in 2019 is shown in (b).
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autoregressive scheme:

j1 =f1

jt =wjt−1 +ft , for t ≥ 2

ft �CAR(t2, r), for t ≥ 1,

(3)

where jt = (ξ1t, …, ξSt), and where ϕt = (ϕ1t, …, ϕSt). Time-
dependence is accounted for with a first-order temporal
autoregression, which is commonly used to model temporal
data (Brockwell and Davis, 2002). The parameter w lies between
−1 and 1 and controls the level of temporal correlation between
consecutive years.

Under our spatio-temporal model, the ϕt’s are independent
and identically distributed random vectors in time t whose distri-
bution follows a CAR model (Besag, 1974; Banerjee et al., 2014).
Typically, CAR models are defined by specifying a univariate con-
ditional distribution for the random effect at each county s. The
mean and variance of this conditional distribution depend on
the spatial relationship between the counties. Our forecast
model uses the CAR model variant proposed in Besag (1974):

fst|f−st, t
2, r � Normal

r

ds

∑
s′=s

ws′sfs′ ,
t2

ds

( )
, for all s.

Here, ϕ−st denotes a random vector that includes every compo-
nent of ϕt except for the sth component ϕst, Normal(μ, σ2) indi-
cates the normal distribution with mean μ and variance σ2, ws′s
is equal to 1 if counties s and s′ border each other (and is 0 other-
wise), and ds is the number of counties that border county s. The
parameter τ2 scales the variance structure of the CAR process.
Note that the conditional variance of ϕst is inversely proportional
to the number of counties bordering it. Thus, if a county has more
neighbors, its random effect has a smaller variance. This is desir-
able because if a county has many neighbors, there is more infor-
mation to use to estimate its random effect. The parameter ρ is
also between 0 and 1 and controls the amount of correlation
between bordering counties. As ρ increases, so does the degree
of dependence between the random effects in neighboring coun-
ties. It can be shown that the model specifications above define a
valid joint distribution for ϕt.

Our model specification is Bayesian in nature. To completely
specify the model, prior distributions need to be assigned. The
exact prior distributions used are listed in the previous forecasting
publications (Bowman et al., 2016; Watson et al., 2017; Liu et al.,
2017a, 2017b). Diffuse prior distributions were placed on the βk
parameters. Diffuse priors have little to no influence on the pos-
terior distribution, thus allowing the data to primarily drive infer-
ence and forecasting. Uninformative (flat) prior distributions are
assigned to w and ρ for the same reasons. Uninformative priors
assign prior probability evenly over all feasible values of the par-
ameter. The prior for τ2 is chosen as a conjugate prior, which
means that the posterior and prior distributions are from the
same distributional family, a computationally simplifying but rea-
sonable assumption. A Markov chain Monte Carlo (MCMC) pos-
terior sampling algorithm was developed to sample all model
parameters and random effects from their posterior distributions.
The Yst for counties not reporting test results were treated as
latent (missing) variables and were sampled along with the
unknown model parameters. For more on Bayesian models and
MCMC methods, see Gelman et al. (2014).

To make a forecast, the model is first fit using all available test
and covariate data for a fixed pathogen. The significance of cov-
ariate factors (whether or not they should be in the model) is
judged using 95% Bayesian credible intervals. All insignificant
variables were removed resulting in a reduced model consisting
of only significant variables; for specific details on how this was
done, see Bowman et al. (2016), Liu et al. (2017a, 2017b), and
Watson et al. (2017).

Once the model has been fit, all significant covariates and
spatio-temporal random effects are forecasted for the forthcoming
year. Forestation, water coverage, mosquito species presence/
absence, and elevation are assumed constant from year to year
and do not need to be forecasted. These covariates are updated
occasionally (e.g. when a new National Land Cover Database is
released). Thus, the covariates that need to be forecasted for
each county are annual temperature, annual relative humidity,
annual precipitation, median household income, and population
density. How this is done is described in Bowman et al. (2016),
Liu et al. (2017a, 2017b), and Watson et al. (2017).

To forecast the spatial and temporal random effects a year in
advance, Equation (3) is used. The ϕt’s are independent and iden-
tically distributed over time given τ2 and ρ, which are sampled
from the posterior distribution. A realization of ϕt+1 is generated
randomly from the fitted CAR model structure; one next sets
jt+1 = wjt +ft+1. This process is repeated for each quartet of
jt, t

2, r,w from the posterior sample, thus yielding a sample of
the forthcoming year’s random effects. For further details, see
Harrison and West (1996) and Gelman et al. (2014). A posterior
sample of next year’s forecasted prevalence, ps,t+1, is then calcu-
lated from (2) using the posterior sample of the βk’s and the fore-
casted values of Xs,k,t+1 and ξs,t+1. Point estimates of the forecasted
prevalence can be generated by taking the mean or median of the
posterior sample of next year’s prevalence.

Weighted correlation will be used to assess the accuracy of the
forecasting methods. To compare the observed and forecasted
county prevalence sets, a weighted correlation is computed. The
contribution of each county to this correlation is weighted by
the number of tests reported in that county; thus, counties not
reporting data do not influence this correlation. The weighted
correlation between two sets of county prevalences – say A =
{a1, a2, …, aS} and B = {b1, b2, …, bS) – is defined as

Corr(A,B) =
∑S

s=1 hs(as − a)(bs − b)�������������������������������������∑S
s=1 hs(as − a)2

∑S
s=1 hs(bs − b)2

√ ,

where hs is the total number of tests reported in county s and the
weighted means are

a =
∑S

s=1 hsas∑S
s=1 hs

; b =
∑S

s=1 hsbs∑S
s=1 hs

.

The interpretation of a weighted correlation is identical to that
of the usual correlation, except that it accounts for unequal sam-
ple sizes through the weights. In particular, the more tests a
county reports, the stronger the penalty is for deviations between
the forecasted and observed prevalences. To create a final forecast
map, the forecasted county prevalences are smoothed using
Kriging, an interpolation method (Stein, 2012), using the default
settings within ArcGIS (ESRI, 2016).
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Forecasting fidelity assessment

To measure forecasting accuracy in 2018, forecasts for each patho-
gen were made from 2012–2017 data. The forecasts were then
compared to the observed 2018 data via a weighted correlation
as described in the preceding section. The same process has
been completed for the 2016 and 2017 forecasts. Table 1 displays
weighted correlations for each pathogen. Heartworm prevalence
was the most difficult to predict and likely attributable to the com-
plexity of factors regulating mosquito populations (Jian et al.,
2014), but still had a correlation of around 0.78. The weighted
correlation for the three tick-borne pathogens exceeded 0.98.

2019 Forecasts

This section presents forecasts for 2019. Some of the covariate
sources have changed from those making the 2016 and 2017 fore-
casts. For ease of interpretation, the 2019 forecasts are presented
in the form of spatial prevalence maps. At the conclusion of
2019, data from this year will be used to compute correlations
akin to those in Table 1 and assess the accuracy of the forecast.

Figure 1 shows the raw B. burgdorferi prevalence aggregated by
county from 2012 to 2018 and the forecasted B. burgdorferi preva-
lence for 2019. Areas in the Appalachian region, northwestern
Minnesota, and Indiana are expected to have higher than the
average prevalence in 2019. The Atlantic coast, New England
states, central Wisconsin, and southeastern Minnesota are all
expected to see lower than average seroprevalence.

Figure 2 shows the raw Anaplasma spp. prevalence aggregated
by county from 2012 to 2018, and the forecasted Anaplasma spp.
prevalence for 2019. Greater than normal prevalence is predicted
in New York and Pennsylvania, while areas along the Atlantic
coast, in the upper Midwest, and southern Texas are expected
to have lower prevalence.

Figure 3 shows the raw Ehrlichia spp. prevalence aggregated by
county from 2012 to 2018, and the forecasted Ehrlichia spp.
prevalence for 2019. Prevalence is predicted to be higher than
average in the south-central US, particularly Oklahoma,
Arkansas, and Missouri. Areas that are predicted to have a
lower than average prevalence include eastern Arkansas and
around the border of North Carolina and Virginia.

Figure 4 shows the raw heartworm prevalence aggregated by
county from 2012 to 2018, and the forecasted heartworm preva-
lence for 2019. Canine heartworm infection prevalence is
expected to be higher than average throughout the southcentral
and southeastern states. Areas of greatest concern are along the
Mississippi River. Also expected to see higher prevalence are
areas in Indiana, Illinois, and Iowa. A few small areas may see
lower than average prevalence: southern Louisiana and southern
Texas.

Interpretation of forecast maps

Prevalence is interpreted differently for different tests. As men-
tioned above, only D. immitis prevalence is based on antigen-
testing. Positive results from heartworm tests are more likely
due to active infections; hence, the reported prevalence is close
to a yearly incidence (rate of new cases in the population within
a given time period). Elaborating, many positive dogs under the
care of a veterinarian will subsequently test negative the following
year; thus, dogs testing positive likely represent new cases. Despite
this, the same dog could get multiple tests in a year. Without

knowing treatment and testing history, annual prevalence cannot
be considered as the true annual incidence. In contrast, tests for
the three tick-borne pathogens are antibody-based. Typically, a
seropositive dog has been exposed to the pathogen and has devel-
oped an antibody response; however, the presence of antibodies
does not imply an active infection. Therefore, the population of
seropositive animals for each of the tick-borne pathogens will
consist of a mixture of previously exposed and uninfected ani-
mals, infected and subclinical animals, and infected and clinically
ill animals. In short, the seroprevalence reported in the maps can
be interpreted as the risk of exposure to each of the VBD
pathogens.

Examination of the maps may reveal areas that appear anom-
alous above and beyond the aforementioned dynamic changes.
For example, areas of unexpectedly high B. burgdorferi prevalence
occur in some Rocky Mountain states. There are several issues to
consider here, including data sample sizes, traveling dogs, a sicker
‘testing population’, and the presence of novel pathogens or vec-
tors. Using Lyme disease and the Rocky Mountain states as an
example, fewer tests are reported from this region. Hence, fore-
casts here have increased variability. To the authors’ knowledge,
there is no evidence of sustained enzootic transmission of B. burg-
dorferi sensu stricto in most of the Rocky Mountain states of New
Mexico, Colorado, Utah, Wyoming, Idaho, and Montana. This
said, traveling dogs that were exposed elsewhere have been linked
to positive samples in this region (Millen et al., 2013). Dogs trav-
eling with their owners to endemic regions are at risk of exposure
and infection and may later test positive in a non-endemic
county. This highlights the need to discuss pets’ travel histories
and future travel plans. In addition, some shelter animals are
transported to different states for adoption purposes, or during
disasters, such as Hurricane Katrina (Levy et al., 2011). These ani-
mals may be exposed prior to transport, and subsequently test
positive in a non-endemic region. In light of these large move-
ments of dogs and climate change, the possibility of both autoch-
thonous and enzootic transmission should be considered. Dogs
traveling with their families and those transported for adoption
could create focal reservoirs that under ideal conditions could
become sources for transmission (Morchón et al., 2012).
Additionally, anomalous areas should not be outright discounted
as inaccurate or unrepresentative of the local disease risk because
the introduction of novel competent vectors or novel pathogens
that cross-react on serologic tests may occur. An example of a
novel pathogen observed in the data (E. muris eauclarensis) is dis-
cussed below. Prevalence may also be higher than expected if test-
ing is biased towards animals with clinical signs of disease.
Although the testing practices of veterinarians throughout the
US is hard to quantify, practitioners in non-endemic regions
may only test sick dogs, and may not routinely conduct wellness
screening. If this occurs commonly within a region, then preva-
lence estimates would be skewed higher.

Prevalence and forecast maps in practice

Evidence-based preventive medicine

The cornerstone of companion animal general practice is prevent-
ive medicine. Annual wellness examinations are recommended by
most veterinarians to address a multitude of health concerns:
nutrition, oral health, parasite control, vaccinations, and screening
tests, etc. Administration of preventive medication, vaccines, and
testing is based on the standards of practice and disease risk levels.
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Here, two methods are presented for assessing the exposure risk
for four canine vector-borne pathogens. Prevalence maps provide
a local, real-time quantification of risk, while annual forecasts
allow for preventive care recommendations to be proactively
strengthened. Historically, the management of emerging infec-
tious diseases has been retroactive, with the response coming
after the disease significantly affects the population. With fore-
casts, higher than normal prevalence can be a priori predicted,
allowing veterinarians to modify their preventative care protocols
as needed. The changes (often increased prevalence) between the
baseline prevalence and the forecasted year serve to highlight the
areas in which veterinarians should be alerted to a possible
change in the risk of exposure to their patients. Slowly changing
risk, as can be the case with VBD, can be difficult to monitor
year to year. The modeling techniques utilized by the forecasts
are more reliable with respect to accurately detecting these
changes when compared to examining the prevalence maps
alone. Additionally, approximately one-third of the counties in
the US do not currently have these test data reported. As part
of the model-building, the missing data from these counties are
interpolated using known data from surrounding counties. As a
result, the forecast maps allow us to predict the risk in areas
that would otherwise have no information.

Both prevalence and forecast maps aid risk communication
with clients. Effective communication skills are critical for the
education of clients when making recommendations for prevent-
ive care and are essential for strengthening the veterinarian–client
bond (Lue et al., 2008). From the client perspective, a clear under-
standing of recommendations is essential as up to 30% of clients
do not follow recommendations when they lack clarity on the
necessity of the intervention (Lue et al., 2008). Communication
can be improved by supplementing conversations with written
instructions, prepared handouts, and other visual aids (Coe
et al., 2008). Both the prevalence and forecast maps are available
for this purpose in a simple format and on multiple platforms.
The ability to display the maps on hand-held devices allows con-
sultation of the maps in the exam room. Local prevalence statistics
provide veterinarians an opportunity to engage clients in data-
driven conversations about the risk of VBD.

Within the context of the veterinarian–client conversation, it is
important to incorporate the pet’s individual risk of exposure to
vectors. Clients expect a personalized approach (Coe et al.,
2008), which ensure that the recommended preventive care mea-
sures are appropriate for that pet. Veterinarians should ask

whether the pet spends any time in favored tick habitats (areas
with tall grass, leaf litter, woods, and brush), including areas
around the client’s home, and about past and future travel.
Travel with pets, particularly dogs, has increased significantly in
the last decade, with 37% of clients reporting pets accompany
them on trips (American Pet Products Association, 2017). This
is especially important when a client is traveling from a
non-endemic to an endemic region. To help facilitate this,
CAPC provides prevalence maps at the national, state, and county
level for in-clinic communication efforts as the knowledge of
vector-borne pathogens outside the home county may be limited
for the veterinarian or client.

Unambiguous risk communication leads to a mutual under-
standing of an individual pet’s risk. This allows veterinarians to
further educate clients on why the proactive management of
VBD is important. Preventative measures vary by the pathogen
of concern and currently include annual testing with pet-side
assays such as those for D. immits, Ehrlichia spp., Anaplasma
spp., and B. burgdorferi, administration of acaricides to reduce
the exposure to tick-borne pathogens, anthelmintics to prevent
the development of D. immitis, and when appropriate, vaccin-
ation against B. burgdorferi. Surveys suggest that owners become
confused about the value of services and products offered during
wellness examination when offered a multitude of choices (Lue
et al., 2008). If overwhelmed, clients usually choose fewer services.
Explaining the value of services is cited as being perceived by cli-
ents as increasing the quality of care provided during annual well-
ness exams. In particular, communication about the cost-savings
of preventing infection, early detection of disease, prevention of
long-term health complications, and early treatment become
invaluable in fostering the veterinarian–client relationship.
Average costs range from $215 (US$ 2017) (Nationwide
Insurance, personal communication) to $1000 (2017 US$)
(Bowman and Atkins, 2009; Colby et al., 2011; Maxwell et al.,
2014; Wolstenholme et al., 2015) depending on the infection;
however, not all animals that test positive for the various patho-
gens are treated. In the case of anaplasmosis, the majority of sero-
positive dogs are subclinical. Therefore, current recommendations
for veterinary care in Anaplasma spp. seroreactive dogs include a
complete blood count with platelet count to determine if treat-
ment is necessary (Little, 2010).

Unfortunately, no consolidated reports exist regarding the
industry-level annual financial impact of VBD in companion ani-
mals. As a result, the financial burden of VBD is difficult to esti-
mate. Lyme disease treatment is approximately $215 per pet
(Nationwide Insurance, personal communication). When aggre-
gated across the veterinary healthcare system, the annual cost
likely lies somewhere between $3.3 and $54 million, with the
low estimate representing the percentage of seropositive animals
that were treated based on insurance claims (Nationwide
Insurance, personal communication), and the high estimate
representing the treatment of all seropositive animals. Similar esti-
mates can be made for the rickettsial diseases, with both ehrli-
chiosis and anaplasmosis having average treatment costs of
$221 per patient (Nationwide Insurance, personal communica-
tion). From this, treatment for ehrlichiosis is estimated to range
from $1.1 to $23 million, and anaplasmosis from $1.1 and $25
million. Finally, the cost for treatment for heartworm infection
is by far the most significant, averaging $400–$1000 per patient
(Bowman and Atkins, 2009; Colby et al., 2011; Maxwell et al.,
2014; Wolstenholme et al., 2015) and costing US pet owners
approximately $75 million annually. Collectively, the burden of

Table 1. Forecast fidelity assessment

Pathogen

Weighted correlation

2016 2017 2018

Borrelia burgdorferi 0.9869 0.9817 0.9870

Anaplasma spp. 0.9873 0.9926 0.9918

Ehrlichia spp. 0.9801 0.9801 0.9803

Dirofilaria immitis 0.8624 0.8499 0.7835

The table displays the weighted correlation between the observed prevalence and
forecasted prevalence. This weighted correlation is similar to ordinary correlation, but here
the contribution of each county to the overall correlation is weighted by the number of tests
that each county reports. Thus, counties which report many tests contribute more to the
correlation than counties which report only a few tests, and counties which do not report
tests do not contribute at all. For details on how the weighted correlation is calculated, see
Watson et al. (2017).

10 Stella C. W. Self et al.



VBD on the veterinary health care sector is estimated to be $80.5–
$177 million annually, and the costs of treatment may change
over time. Note that these estimates are based on just one of
many insurance companies and may not represent out-of-pocket
costs and those spent on complicated cases. The broad range of
estimates for the financial impact of VBD highlights an opportun-
ity for a subsequent analysis of cost that is inclusive of all stake-
holders, including the pet insurance industry, corporate
veterinary groups and regional private practices.

Despite our limitations in clearly defining financial impact, the
financial burden of treating infected animals supports the need
for anthelmintics, acaricides, vaccinations, and testing. For veter-
inarians, there is an obvious cost-to-benefit and financial saving
to pet owners who opt for prevention, yet most veterinarians
face challenges with preventive compliance. Administration of
preventive medications is generally recommended year-round to
prevent any exposure windows (Nelson et al., 2014; Companion
Animal Parasite Council, 2018; US Food and Drug
Administration, 2018); yet, the majority of dogs only receive sea-
sonal treatment, averaging 6–8 months of heartworm prevention
(Gates and Nolan, 2010). Only 64% of clients use parasiticides on
a year-round basis (American Pet Products Association, 2017).
Similarly, in a recent survey, only 62% of owners recalled their
veterinarian’s recommendation of 12-month coverage for flea
and tick prevention (Lavan et al., 2017). The seasonal window
for exposure risk depends on the phenology (seasonality) of the
vectors, which is influenced by dynamic climatological factors
(Eisen et al., 2015) and can vary temporally and geographically,
even within a small region of a state. Attempting to predict this
window and only provide prevention could result in inadvertent
exposure that could have been easily prevented with year-round
administration.

Beyond preventive treatments, veterinarians practicing in areas
of high B. burgdorferi seroprevalence may also recommend vac-
cination against B. burgdorferi. The maps are useful in identifying
endemic regions of Lyme disease to determine when a Lyme dis-
ease vaccine should be recommended, with the additional consid-
eration of having a discussion with clients about frequent travel
with pets to well-established endemic regions such as the
Northeast and Central Upper Midwest. Veterinarians in regions
between high- and low-prevalence areas could use the prevalence
and forecast maps in conjunction with knowledge of the individ-
ual dog to establish a cost-to-benefit of vaccination. Guidelines for
the prevention and treatment of VBD and a broad range of para-
sitic diseases are accessible at http://www.capcvet.org/guidelines/,
recent guidelines from the American College of Veterinary
Internal Medicine on Lyme borreliosis in dogs are available
(Littman et al., 2018), and guidelines on the prevention, diagnosis,
and treatment of heartworm are available from the American
Heartworm Society (Nelson et al., 2014). Despite the availability
of preventative medications and vaccines, pets are never 100%
protected against exposure (Vogt et al., 2019). Therefore, annual
screening tests are recommended (Nelson et al., 2014;
Companion Animal Parasite Council, 2018; US Food and Drug
Administration, 2018). Furthermore, additional testing data
improve the fidelity of the forecasts. Reporting of test results
back to the diagnostic company greatly aids VBD surveillance,
particularly when in-clinic tests are utilized.

Finally, most practitioners recognize a shift in veterinary–cli-
ent interactions toward a consumer-centric model where clients
are frequently empowered consumers and prefer to have a voice
in their pet’s healthcare decisions. Pet owners often enter the

exam room armed with information and opinions on optimal
care for their pets. Sometimes, clients’ preconceived ideas are at
odds with the practitioner’s training and knowledge base, with
the source of information used by clients often coming from
Internet sources of questionable validity. To satisfy growing con-
sumer demands for information, VBD forecast and prevalence
maps are available at the CAPC consumer-focused website
www.petsandparasites.org. These maps provide accurate informa-
tion on disease prevalence, with an emphasis that their veterinar-
ian is the local expert on VBD testing, prevention, and treatment.
Communication of science to the general public is increasingly
recognized as a core responsibility of scientists and health care
providers; ultimately, the presentation of accurate information
in jargonless language allows clients to make informed decisions
about prevention measures.

One Health

Often, the VBD conversation between veterinarians and clients
extends to the human risk and the health and well-being of clients
and their family. Many vector-borne pathogens infect both people
and dogs, including B. burgdorferi, E. chaffeensis, E. ewingii,
A. phagocytophilum, and A. platys. A recent study found that
tick-infested dogs can transfer ticks directly to human hosts dur-
ing interactions and serve as transport hosts, carrying ticks in and
around dwellings (Jones et al., 2018). For these zoonotic patho-
gens, the CVBD maps suggest where human beings are at risk
of exposure (Liu et al., 2019). Unfortunately, routine testing is
not conducted for many other vector-borne pathogens of rele-
vance to people and dogs and general surveillance is lacking.
However, one may still derive pathogen risk information when
a vector of one of the mapped pathogens is shared. For example,
co-infections of Ixodes scapularis with multiple pathogens (e.g.
B. burgdorferi, Borrelia miyamotoi, A. phagocytophilum, Babesia
microti, and Bartonella spp.) are common (Adelson et al., 2004;
Diuk-Wasser et al., 2016), and infection with Ehrlichia species
and several other vector-borne pathogens such as Rickettsia and
Bartonella have been concurrently observed in people and dogs
(Kordick et al., 1999). Wildlife is the reservoir for many vector-
borne pathogens and the environment is a critical factor in deter-
mining the emergence of those pathogens (Daszak et al., 2001),
highlighting the incredible importance of One Health, not just
public health, in the prevention of VBD in all hosts. Inclusion
of information about family risk serves to foster client relation-
ships and illustrates the professional commitment of veterinary
practitioners to pets and their owners.

Vector-borne disease research

Vector information, such as endemic regions and abundance, are
critical for understanding VBD establishment and spread.
Unfortunately, accurate data on vector populations are currently
economically and logistically unfeasible to collect, and such data
deficiencies will likely continue to limit micro-scale VBD knowl-
edge. Given the logistical and financial barriers, targeting vector-
specific research to emerging areas generally has the greatest
impact. Forecast estimates can be used to guide study designs
for regional comparison of vector presence and abundance, com-
parative studies in zoonotic disease research relating human inci-
dence to companion animal disease prevalence, and VBD
research comparing different canine populations.
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Examples of the impact of VBD mapping on research are evi-
dent in the literature. For example, an annual analysis of VBD has
revealed regional foci of infections that were inexplicable in the
context of what was currently known about the pathogens or pre-
sent vectors. Specifically, in 2009, researchers were surprised by
the foci of seroreactivity to Ehrlichia spp. in dogs in Wisconsin
and Minnesota, a region where E. chaffeensis is not present or
is only present in low prevalence (Bowman et al., 2009).
Investigators reasoned that there may be foci of intense E. canis
transmission in these specific regions, or alternately, exposure of
dogs to a novel Ehrlichia spp. that has yet to be described. Soon
after, researchers identified four human cases of ehrlichiosis in
Minnesota and Wisconsin that were not caused by E. chaffeensis
or E. ewingii, but instead by a newly discovered Ehrlichia species,
ultimately named E. muris euclairensis (Pritt et al., 2011). By
2012, researchers identified a dog infected with E. muris euclair-
ensis in the same region (Hegarty et al., 2012), illustrating that
anomalies can be early indicators of an emerging disease. In
another example, unexpected increases in Anaplasma spp. sero-
prevalence have been observed in Texas, notably on the
Mexican border and along the western edge of the state. These
observations are notable given the recent study by Movilla
et al., who documented canine seroprevalence of Anaplasma
spp. in several states in Mexico (Movilla et al., 2016) (the highest
seroprevalence occurs in northwestern Mexico at 16.4%, and the
lowest occurs in the north-central states of the country at 0.6%).

It is important for map users to understand that the estimates
shown in the maps are based on historical data. As such, rapidly
occurring events are unlikely to be predicted. This is less of a con-
cern with tick-borne disease, which generally exhibits slow spread
and is not prone to rapid, large-scale epidemics. However, forecast
models of tick-borne pathogens may be improved by the inclusion
of predictors shown to forecast the distribution and densities of
ticks (Feria et al., 2014; Brugger et al., 2018). In contrast, mos-
quito vectors of D. immitis may be strongly influenced by short-
term disturbances in weather patterns, and notably in abundance
of bodies of water, both standing and transitory (Valle et al.,
2013). Until a better understanding of the ecology of mosquito-
borne disease transmission at a fine spatial and temporal scale
is achieved, it will be difficult to forecast short-term changes.

There is still much to learn about the epidemiology of canine
vector-borne infections. Novel pathogens are continually being
discovered in dogs and people. Additional organisms are detected
in wildlife species that could one day emerge in other hosts. These
new pathogens pose diagnostic challenges and generally are
poorly understood in regard to vector(s) used, reservoir host(s)
of importance, and clinical disease risks. Regarding modeling,
future studies are needed to produce long-term forecasts, develop
models that can define areas that are experiencing increasing/
decreasing prevalence in both space and time, understand the
impact of natural disasters on prevalence, understand the preva-
lence of disease, not just exposure, within the population, and
ultimately evaluate the application of these data to forecast
human exposure risk. Canadian testing data has been recently
made available and future studies will seek to include these
data. Veterinarians in Canada use similar testing practices, allow-
ing us to expand the forecasts to include Canada.

Conclusion

The prevalence and forecast maps reviewed here are designed to
be a timely aid for veterinary practitioners in developing

preventive care protocols by keeping veterinarians up to date on
the present risk of exposure to several vector-borne pathogens.
The maps allow veterinarians to practice evidence-based medicine
and help in risk communication with pet owners. In particular,
the forecast maps allow veterinarians to be proactive in their pre-
vention protocols by giving accurate estimates to the expected
level of local risk for the coming year.
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