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Abstract

Background: Dogs in the United States are hosts to a diverse range of vector-borne pathogens, several of which
are important zoonoses. This paper describes factors deemed to be significantly related to the prevalence of
antibodies to Ehrlichia spp. in domestic dogs, including climatic conditions, geographical factors, and societal
factors. These factors are used in concert with a spatio-temporal model to construct an annual seroprevalence
forecast. The proposed method of forecasting and an assessment of its fidelity are described.

Methods: Approximately twelve million serological test results for canine exposure to Ehrlichia spp. were used in
the development of a Bayesian approach to forecast canine infection. Data used were collected on the county level
across the contiguous United States from routine veterinary diagnostic tests between 2011–2015. Maps depicting
the spatial baseline Ehrlichia spp. prevalence were constructed using Kriging and head-banging smoothing methods.
Data were statistically analyzed to identify factors related to antibody prevalence via a Bayesian spatio-temporal
conditional autoregressive (CAR) model. Finally, a forecast of future Ehrlichia seroprevalence was constructed based on
the proposed model using county-level data on five predictive factors identified at a workshop hosted by the
Companion Animal Parasite Council and published in 2014: annual temperature, percentage forest coverage,
percentage surface water coverage, population density and median household income. Data were statistically analyzed
to identify factors related to disease prevalence via a Bayesian spatio-temporal model. The fitted model and factor
extrapolations were then used to forecast the regional seroprevalence for 2016.

Results: The correlation between the observed and model-estimated county-by-county Ehrlichia seroprevalence for
the five-year period 2011–2015 is 0.842, demonstrating reasonable model accuracy. The weighted correlation
(acknowledging unequal sample sizes) between 2015 observed and forecasted county-by-county Ehrlichia
seroprevalence is 0.970, demonstrating that Ehrlichia seroprevalence can be forecasted accurately.

Conclusions: The forecast presented herein can be an a priori alert to veterinarians regarding areas expected to
see expansion of Ehrlichia beyond the accepted endemic range, or in some regions a dynamic change from
historical average prevalence. Moreover, this forecast could potentially serve as a surveillance tool for human
health and prove useful for forecasting other vector-borne diseases.
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Background
Ehrlichia species are intracellular gram-negative bacteria
that are maintained in a complex life-cycle involving ver-
tebrate hosts as reservoirs and ticks as vectors [1–4]. In
North America, multiple Ehrlichia spp. reportedly infect
dogs, including Ehrlichia canis, Ehrlichia chaffeensis,
Ehrlichia ewingii, Ehrlichia sp., Panola Mountain Ehrlichia
(PME), or coinfection with multiple Ehrlichia species.
Most of these bacteria (E. chaffeensis, E. ewingii and Ehrli-
chia sp. PME) are maintained in nature in white-tailed deer
(Odocoileus virginianus) reservoirs and are transmitted by
Amblyomma americanum (lone star ticks). Ehrlichia canis
is primarily transmitted among domestic dogs by Rhipice-
phalus sanguineus (brown dog ticks). Dermacentor varia-
blis (the American dog tick) is a potential vector of E.
chaffeensis and E. canis [4–8]. In the absence of coinfec-
tion, E. chaffeensis produces relatively mild canine disease
[4]; however, E. chaffeensis is most commonly cited as the
causative agent in human monocytic ehrlichiosis [5]. While
E. canis was historically believed to be the predominant
Ehrlichia spp. to infect dogs, recent data on exposure of
dogs to Ehrlichia spp. using species specific peptides has
shed light on the spatial variation and prevalence of Ehrli-
chia exposure in dogs [7]. Qurollo et al. [7] found that in
the Southern, Mid-Atlantic, Northeastern and Midwestern
US dogs were predominantly exposed to E. ewingii and E.
chaffeensis. In contrast, canine E. canis seroreactivity was
low in these regions, and was the predominant, or only,
Ehrlichia species responsible for Ehrlichia seroconversion
in the western US.
Veterinary wellness exams commonly include annual

screening for exposure to Ehrlichia spp.; Anaplasma
spp., Borrelia burdgorferi (Lyme disease agent) and infec-
tion with Dirofilaria immitis (heartworm disease agent)
using a rapid, in-house enzyme-linked immunosorbent
assay (ELISA) platform (SNAP®3Dx®, SNAP® 4Dx® and
SNAP®4Dx® Plus, IDEXX Laboratories, Inc.). This in-
house assay, while highly specific and sensitive for expos-
ure to Ehrlichia spp., uses recombinant peptides of major
E. canis and E. ewingii outer membrane proteins [7, 8],
thus precluding speciation of seroreactivity. As such, these
tests are interpreted by veterinary clinicians to indicate
tick exposure and a history of transmission of Ehrlichia
spp. and possibly other tick-borne pathogens. Of four mil-
lion dogs tested for exposure to Ehrlichia in 2015, over
100,000 dogs were seropositive for Ehrlichia spp. [9]. Clin-
ical ehrlichiosis in dogs can manifest in one or more ways:
acute, subclinical and chronic [10, 11]. The acute phase
occurs within 1–3 weeks after tick transmission of Ehrli-
chia and includes enlarged lymph nodes, weakness, leth-
argy, depression, anorexia, labored breathing, and limb
edema. Some dogs do not develop clinical signs of acute
ehrlichiosis. After the acute phase dogs enter a subclinical
phase in which infection may persist for months or years

without clinical signs. Finally, during the chronic phase,
dogs may experience abnormal bleeding such as epistaxis,
become anemic, or have cyclic thrombocytopenia. They
may also experience severe weight loss, fever, difficulty
breathing due to lung inflammation, shifting leg lameness
due to joint inflammation and pain, or kidney failure and
paralysis [12].
Canine ehrlichiosis has been reported throughout the

contiguous United States; however, the geographical
range of different Ehrlichia spp. varies considerably, in-
fluenced by the range and density of their primary vec-
tors. For example, the highest concentration of E. canis
cases have been reported in southwestern and Gulf
Coast regions of the United States, whereas the highest
incidence of E. chaffeensis and E. ewingii cases occur in
the midwestern and southeastern United States, places
where A. americanum occurs in high densities. The dis-
tribution and number of ehrlichiosis cases have in-
creased six-fold over the last five years [7, 8]; cases have
been found in states as far north as Maine and as far west
as Arizona, California and Nevada [9]. The dynamic
change in prevalence in non-endemic regions has led to
speculation on possible changing tick populations, which
may be influenced by factors such as climate change,
encroaching urbanization, and increasing urban/suburban
populations of wildlife reservoirs.
In developing our approach, a Bayesian spatio-temporal

conditional autoregressive (CAR) model is utilized to
assess the putative factors and forecast future trends in
Ehrlichia spp. prevalence. In this venue, Bayesian model-
ing offers a number of advantages over classical ap-
proaches [13–15]. First, the probabilistic likelihood-based
methods here are highly flexible, and are able to adapt to
data availability problems. The methods are also capable
of assessing predictive significance of various covariate
factors. Secondly, the use of data augmentation Markov-
chain Monte Carlo (MCMC) methods to sample from a
posterior distribution provides the opportunity to treat
missing data, such as absence of serological data from cer-
tain counties, as latent (missing) variables, even in large
populations [16, 17]. Finally, these methods are directly
amendable to forecasting future trends in seroprevalence,
conditional on the past history of data. The Bayesian
methods capably quantify uncertainty both in terms of the
potential stochasticity of the disease process and the
model parameter estimates.
In what follows, eight factors previously purported to in-

fluence canine Ehrlichia seroprevalence will be examined:
annual precipitation, annual relative humidity, annual
temperature, elevation, percentage forest coverage, per-
centage surface water coverage, population density and
median household income [18]. After a predictive model
is developed from these factors, annual Ehrlichia sero-
prevalence forecasts are constructed and a comparison
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between the 2015 actual versus predicted Ehrlichia preva-
lence was conducted. Intended uses of annual Ehrlichia
seroprevalence forecasts include: (i) to encourage the use
of tick preventive to reduce exposure using an evidence-
based tool, (ii) to promote the use of annual use of diag-
nostic testing in areas where the disease is emerging, and
(iii) to potentially extend the use of canine data as a sur-
veillance tool for physicians to assess potential threats to
human health from Ehrlichia species.

Methods
The data and baseline map construction
The data included in this study were canine serological
test results for antibodies to Ehrlichia spp. in the contigu-
ous United States from 2011–2015, and various climate,
geographical, and socio-economic factors purported to in-
fluence Ehrlichia seroprevalence. The dataset, obtained
from IDEXX Laboratories, Inc. [19], contained 11,967,465
tests, 305,409 of which were positive (2.55%) for Ehrlichia
spp. antibodies, and the county of the testing clinic. No in-
formation was available on demographic details of the in-
dividuals tested, such as age, sex or breed of dog, nor the
travel or testing history of the dog, or the reason why the
tests were conducted.
The test data were aggregated into the number of

positive and negative tests for each year in each contigu-
ous United States county or parish. The explanatory fac-
tors chosen for inclusion are those purported to be
associated with canine Ehrlichia seroprevalence and for
which data are readily available on a wide geographical
scale in the United States [18]. Table 1 lists eight consid-
ered factors, the time period of recording, and the geo-
graphical scale of collection. These eight factors can be
grouped into climatic variables (annual temperature,
precipitation and relative humidity), geographical vari-
ables (county elevation, forestation coverage and surface
water coverage), and socio-economic variables (popula-
tion density and median household income), and are dis-
cussed in more detail in [20].

The county-by-county raw seroprevalence aggregated
over the five-year data record are shown in Fig. 1. The
raw seroprevalence in Fig. 1 exhibits apparent positive
spatial dependence: counties near each other tend to re-
port similar prevalences. Also, prevalence at a fixed county
is often similar in adjacent years (this structure cannot be
discerned from Fig. 1, but is evident from sample correla-
tions and other diagnostics, data not shown); hence, posi-
tive temporal correlation exists in our data. In the next
section, a statistical model that accounts for spatial and
temporal correlation is developed to analyze these data.
Figure 2 displays a map of the raw seroprevalences

after a head-banging smoothing procedure was applied
to produce a “baseline” (average year) map. Twenty tri-
ples and weights that are proportional to the number of
observations taken in each county over the five-year
period were used in the smoothing. Down weighting
counties with a small number of tests helps account for
sample size effects, preventing the map from signaling a
high/low prevalence that is more likely attributed to a
small sample size (e.g. one positive out of three tests has
the same prevalence as one hundred positives in three
hundred tests, though the latter has more certainty with
respect to risk). Note, in order to provide a spatially
complete map in Fig. 2, Kriging was implemented in
ArcGIS using the default parameters. In general,
Kriging is a standard spatial interpolation method for
which the interpolated values are modeled by a
Gaussian process. The predictions obtained using this
technique are based on the assumptions that spatial
variability in the data is related to the distance between
observations, and that values in unsampled areas can
be predicted as a weighted average of observations at
nearby locations.
The map in Fig. 2 shows a band of high prevalence

stretching from western Texas and eastern New
Mexico, through northern Texas, eastern Oklahoma,
Arkansas, Missouri, northern Mississippi, and western
Tennessee. Another zone of high prevalence is seen in
eastern North Carolina and Virginia; this zone ceases

Table 1 Factors purported to influence Ehrlichia seroprevalence in domestic dogs. For further discussion, including the source of
each factor, see [18, 20]

Factor Data period Scale Notation Numerical scale of data

Climate factors Annual temperature 1895–2015 Climate Division Xs,1(t) Continuous

Annual precipitation 1895–2015 Climate Division Xs,2(t)

Annual relative humidity 2006–2015 Climate Division Xs,3(t)

Geographical factors Elevation 2012 County Xs,4(t) Continuous

Percentage forest coverage 2012 County Xs,5(t)

Percentage surface water coverage 2010 County Xs,6(t)

Societal factors Population density 2011–2014 County Xs,7(t) Continuous

Median household income 1997–2014 County Xs,8(t)
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over the southern Appalachian Mountains. Other iso-
lated high-prevalence regions occur in central Georgia
and the northern Rockies. The western United States
generally has lower prevalence compared with the
southeastern United States, but isolated foci of sero-
positive dogs exist in many areas of the country. Several
factors, including habitat, hosts, microclimate, etc., may
be associated with the presence and location of theses
isolated foci [21] but nonetheless, Fig. 2 should serve as
an accurate depiction of the baseline ehrlichiosis risk
for dogs.

Results
Model
The model and methods used to statistically analyze the
Ehrlichia test results are now described. The goal is to
assess which of the proposed factors significantly influ-
ence Ehrlichia presence and whether they increase or
decrease prevalence.
Let Ys(t) and ns(t) denote the number of positive and

total tests conducted in year t and county s, respectively,
for counties s = 1,…, S and years t = 1,…,T. Bayesian
hierarchical models have successfully described many
spatial-temporal dependent data sets. Here, spatial and
temporal dependence is modeled in a hierarchy by

introducing random effects with certain structures. For a
modern review of spatio-temporal models, see [22, 23].
Typically, a Poisson marginal distribution is preferred to
model spatial or spatial-temporal dependent count data
[23–26]. Motivated by [24], the following Bayesian hier-
archical Poisson regression model is adopted:

Y s tð Þjns tð Þ; ps tð Þ ∼ Poisson ns tð Þps tð Þf g; ð1Þ

log ps tð Þf g ¼ β0 þ
X8
k¼1

βkXs;k tð Þ þ ξs tð Þ; ð2Þ

where log(⋅) denotes natural logarithm, ∼ means has the
distributional type, Xs(t) = (Xs,1(t), …, Xs,8(t))' contains
the factor information at the time t (' denotes matrix
transpose), ps(t) denotes the prevalence of Ehrlichia
within county s at time t, and the symbol ∣ indicates
given quantity(ies). For example, the first equation above
indicates that Ys(t) has a Poisson distribution with mean
ns(t)ps(t) when one knows that ns(t) tests were taken in
county s during year t and the prevalence at this county
and time is ps(t). The quantities β = (β0,…, βp)' are factor
regression coefficients.
Equation (2) induces spatial and temporal correl-

ation in our model through the random effects ξs(t),

No Data
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Fig. 1 County level raw prevalences for Ehrlichia antibodies reported in domestic dogs, aggregated over 2011–2015
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for s = 1,…, S and t = 1,…,T. The disease counts are as-
sumed to be conditionally independent across counties
given the factors and random effects - without additional in-
formation, this is a reasonable (and standard) assumption.
There are several common ways to induce spatial and

temporal dependence with the random effects {ξs(t)}.
The autoregressive structures

ξ1 ¼ ϕ1; ð3Þ
ξt jξt−1;φ ¼ φξt−1 þ ϕt ; for t ¼ 2;…;T ; ð4Þ

ϕt ∼ CARðτ2; ρÞ; for t ¼ 1;…;T ; ð5Þ
are natural choices. Here, ξt = (ξ1(t),…, ξS(t))' and ϕt =
(ϕ1(t),…, ϕS(t))' are autoregressive and CAR effects at time
t. Elaborating, (5) uses a conditional autoregressive distri-
bution [27], which is a popular approach to model spatial
dependence (see [28]). In this setup, the spatial random ef-
fects ϕt at time t are independent and identically distrib-
uted in time, and for each fixed time, follow a CAR
distribution across the counties, which is a spatially corre-
lated random field.
More specifically, let ϕ = (ϕ1,…,ϕS)' denote a random

vector drawn from our CAR distribution at any fixed year.
Such an object contains an effect for each county. Typically,

the distribution of ϕ is specified through a set of S univari-
ate conditional distributions; spatial dependence is induced
in a neighboring system involving geographically adjacent
counties. Our CAR version, taken from [29], uses

ϕs∣ϕ−s; τ
2; ρ;W∼N ρ

X
s0≠s

ws;s0ϕs0X
s0≠s

ws;s0
;

τ2X
s0≠s

ws;s0

 !
; for

s ¼ 1;…; S;

ð6Þ

where ϕ-s = (ϕ1,…, ϕs − 1, ϕs + 1,…, ϕS)' contain effects
for all counties except the sth one and N(μ, σ2) denotes a
normally distributed quantity with mean μ and variance
σ2. Here, W = {ws,s' } is an S × S dimensional matrix
whose entries are either zero or unity. Specifically, ws,s'

is taken as unity (i.e. ws,s' = 1) if and only if the sth and
s' th counties border each other (at some place); ws,s' = 0
otherwise. The parameter τ2 is a scaling variance param-
eter and ρ ∈ [0, 1] is the autocorrelation between border-
ing counties. When ρ = 0, the ϕs are independent over
different counties s; antipodally, ρ close to unity indi-
cates strong spatial dependence in bordering counties.
In (4), a temporal autoregressive model of order one

(AR(1)) is used to describe temporal dependence. The

0% - 0.5%

0.5% - 1%

1% - 1.5%

1.5% - 2%

2% - 3%

3% - 4%

4% <

Fig. 2 Head-banged baseline map showing Ehrlichia seroprevalences in domestic dogs for an average year
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AR(1) model, a time series staple [30], describes the
prevalence at each fixed county across different years.
The parameter φ is the temporal correlation between
consecutive years and lies within (-1, 1). This ensures a
causal and stationarity solution to the time series model
(see [30]), which is needed in estimation.
From (6), the conditional expectation of ϕs given its

neighbor’s random effects (and other parameters) is the
scaled (by ρ) weighted average of the neighboring ran-
dom effects. The conditional variance of ϕs given its
neighbor’s random effects is inversely proportional to
the number of its neighbors. Hence, counties that border
many other counties have a smaller variance. This is in-
tuitive as data from bordering counties are useful with
respect to predicting the prevalence of a given county,
and more data equates more precise predictions. From
(6), the joint distribution of ϕ can be shown to be multi-
variate normal:

ϕ ∼ Nð0; ΓÞ; ð7Þ

Γ ¼ τ2 D−ρWð Þ−1; ð8Þ
where W is the aforementioned neighborhood matrix
and D = {ds,s' } is an S × S diagonal matrix whose sth diag-
onal element is the number of counties that county s

borders: ds;s ¼
X
s0≠s

ws;s0 (ws,s = 0 here).

The parameters to be estimated include β, φ, ρ, and τ2.
In order to complete the Bayesian model, prior distribu-
tions for these parameters were specified as:

βk ∼ N 0; 1000ð Þ; for k ¼ 0;…; 8; ð9Þ
φ ∼ Uniform −1; 1ð Þ; ð10Þ
ρ ∼ Uniform 0; 1ð Þ; ð11Þ

τ−2 ∼ Gamma 0:5; 0:05ð Þ: ð12Þ
Note, the prior distributions for φ and ρ are unin-

formative (all admissible possibilities are equally likely);
those for the regression coefficients β0,…, β8 are diffuse
(so that inferences for these parameters are based mainly
on the data); and the prior for τ- 2 is chosen as a
conjugate-prior (the posterior and prior distributions are
from the same distributional family) for ease of compu-
tation. The random effects and model parameters are es-
timated based on posterior samples from a Markov
chain Monte Carlo (MCMC) simulation. The MCMC
simulation for our model uses a combination of Gibbs
and Metropolis-Hastings steps [13, 16, 17]. In the algo-
rithm, prevalence estimates for counties not reporting
any data are infilled for ease of computation. To run our
MCMC simulation and assess factor significance, a pro-
gram was developed and implemented in R and C++.

Factor assessment
Eight explanatory factors are available for inclusion in
the spatio-temporal Poisson regression model in (1). To
assess which factors significantly influence Ehrlichia
seroprevalence, a “full" model with all eight factors was
first fitted and credible intervals for all regression pa-
rameters were calculated from the MCMC posterior
samples. Table 2 shows estimates of these eight regres-
sion coefficients (posterior median) and their 98.75%
highest posterior density (HPD) intervals. These HPD
intervals were adjusted to account for multiple compari-
sons using the standard Bonferroni correction with a
family wise error rate of 10%. For HPD interval details,
see [13].
The HPD intervals in Table 2 show that not all factors

are significant; for example, credible intervals for annual
precipitation, annual relative humidity, and elevation
contain zero. As a parsimonious model with only signifi-
cant factors is desired, eight models were fitted, each
containing a combination of the three questionable fac-
tors of annual precipitation, annual relative humidity,
and elevation, along with the other five factors. In all
additional model fits, these three factors were deemed
insignificant. To further investigate these three insignifi-
cant factors, three additional models were fit, each using
only the dismissed factor as the only covariate. From
these analyses, it was judged that each of these factors
were indeed insignificant. In particular, 95% HPD intervals
associated with the regression coefficients for annual pre-
cipitation, annual relative humidity, and elevation were
[-0.057, 0.035], [-0.007, 0.002] and [-0.013, 0.038], respect-
ively. Therefore, our parsimonious model includes the five
factors of annual temperature, percentage forest coverage,
percentage surface water coverage, population density,
and median household income. Parameter estimates (pos-
terior median) and 95% HPD intervals for the regression
parameters in this model are presented in Table 3. The es-
timates (posterior median) of the other model parameters
are φ = 0.893, ρ = 0.999, and τ2 = 0.574.

Table 2 Parameter estimates from the full model

Factor Estimate 98.75% HPD Interval

Annual temperature 0.022 [0.003, 0.042]

Annual precipitation -0.008 [-0.060, 0.049]

Annual relative humidity -0.004 [-0.010, 0.004]

Elevation 0.025 [-0.001, 0.056]

Percentage forest
coverage

3.295 [2.171, 4.499]

Percentage surface
water coverage

0.519 [0.173, 0.804]

Population density -3.578 × 10-5 [-5.692 × 10-5, -1.301 × 10-5]

Median household
income

-0.003 [-0.007, -0.001]
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Our parsimonious five factor model in Table 3 shows
that Ehrlichia seroprevalence increases with increasing
annual temperature, forest coverage, and surface water
coverage while seroprevalence decreases with increasing
population density and median household income. Figure 3
graphically portrays our fitted model by plotting the
average model-predicted prevalence (over all years)
after smoothing (Kriging with default parameters were
used in the software ArcGIS). The picture compares
well to the head-banging smoothed baseline in Fig. 2.
In fact, the correlation between the Figs. 2 and 3 graph-
ics is 0.842 (this correlation is taken over counties
reporting at least one test during the five year study

period). Our correlation between the two observation
sets {As}s = 1

S and {Bs}s = 1
S is

Corr Asf g; Bsf gð Þ ¼
XS

s¼1
ns As−A
� �

Bs−B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS

s¼1
ns As−A
� �2XS

s¼1
ns Bs−B
� �2q ;

ð13Þ
where

A ¼
XS

s¼1
nsAsXS

s¼1
ns

;B ¼
XS

s¼1
nsBsXS

s¼1
ns

are the sample-size weighted averages of {As}s = 1
S and

{Bs}s = 1
S , and ns is the number of tests conducted in

county s. Note, the expression in (13) denotes the usual
weighted sample correlation and directly accounts for
sample size differences (i.e. different values of ns). Be-
cause the correlation here is between smoothed and
model-estimated prevalence (these are not sample size
dependent quantities), the weights were taken as ns≡1,
which causes (13) to revert to the usual sample correl-
ation. The 0.842 correlation achieved indicates that the
regression model has explained most of the data’s
structure.

Table 3 Parameter estimates from the selected model

Factor Estimate 95% HPD Interval

Annual temperature 0.021 [0.007, 0.030]

Percentage forest
coverage

3.276 [2.407, 4.223]

Percentage surface
water coverage

0.458 [0.242, 0.718]

Population density -3.578 × 10-5 [-5.123 × 10-5, -1.789 × 10-5]

Median household
income

-0.004 [-0.006, -0.001]

0% - 0.5%

0.5% - 1%

1% - 1.5%

1.5% - 2%

2% - 3%

3% - 4%

4% <

Fig. 3 Model-based Ehrlichia seroprevalences
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The fitted model has a number of uses. In the next
section, the model is used to construct an annual Ehrli-
chia seroprevalence forecast. The model could also be
used to extrapolate how climate change or other changes
in factors would influence ehrlichiosis risk.

Forecasting
This section builds an annual Ehrlichia seroprevalence
forecast from the model in the last section. Such a fore-
cast can be used to issue alerts or make veterinarians
aware of areas expected to be problematic in advance.
Remediation tactics could be based on the forecasts.
To forecast next year’s Ehrlichia seroprevalence, all five

significant explanatory factors and the spatial-temporal ef-
fects will need to be forecasted. Two of the five factors are
relatively stable: county forestation and surface water
coverage do not change appreciably in time. Hence, the
most recent observations of these factors are used as next
year’s forecasted values.
To forecast annual temperature, historical temperature

records were collected from 1895 to 2015 for each
county and modeled as an autoregressive model of

order one (AR(1)). The AR(1) model for an annual
temperature series {Ft} (previously denoted by {Xs,1(t)}
for county s) obeys the difference equation

Ft ¼ δ þ γFt−1 þ ωt ;

where {ωt} is zero mean white noise; for further details
on time series and forecasting, see [30]. The AR(1)
model can be fit to the observations in {Ft} using practic-

ally any statistical software package. Let δ̂ and γ̂ denote
estimates of δ and γ, respectively. A prediction of the an-
nual temperature at year t + 1 from temperatures from
year 1 to year t is

F̂ tþ1 ¼ δ̂ þ γ̂Ft :

In our forecast, F̂ tþ1 is used at next year’s forecasted
factor value. Figures 4 and 5 show forecasted and ob-
served annual temperatures for 2015. The correlation
between these two figures in (13) is r = 0.996, which sug-
gests a high degree of fidelity in our predictive model.
A simple linear regression model was used to forecast

next year’s median household income {It} in each county

No
Dat

a
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- 44
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- 48

48
- 52

52
- 56

56
- 60

60
- 64
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- 76

Fig. 4 County-by-county forecasted 2015 annual average temperatures (°F)
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(this factor was previously denoted by {Xs,8(t)}. Historical
median household incomes from 1997–2014 were used
to fit the regression model in each county:

It ¼ αþ κt þ ηt ;

where {ηt} is zero mean random noise. Least squares es-
timators of α and κ, denoted by α̂ and κ̂ , respectively,
were computed from the data at each county. The fore-
casted value for year t + 1 (year 2015) is simply

Î tþ1 ¼ α̂ þ κ̂ t þ 1ð Þ:
Forecasting the county population density for next

year requires the county areas and their recent popula-
tion counts. The US Census provides reliable county
population counts for 2010, but not every year since
then. Estimated state populations were obtained for each
state between 1969–2014. A simple linear regression
was fitted to this data for each state and 2015 state pop-
ulations were forecasted. This forecasted state popula-
tion was then partitioned to the counties within the
state at a proportion that agrees with 2010 Census.

To forecast the spatial and temporal random effects a
year in advance, formula (4) is used. Since the ϕt s are
independent and identically distributed over various years,
given values of τ2 and ρ (available from the posterior sam-
ples), ϕt + 1 is generated randomly from the multivariate
normal distribution N(0, τ2(D − ρW)- 1). Then ξt + 1 is set
to ξt + 1 = φξt + ϕt + 1. This process is repeated for each pair
of ρ and τ2 available from the posterior sample, thus yield-
ing a sample of the next year’s random effects. See [14] for
additional detail.
To see how our forecast performs, the 2015 test and

factor data were removed from the analysis, and the pro-
posed model was refitted with data from 2011–2014
only. Forecasts are based on use of the five significant
factors annual temperature, percent forest coverage,
percent surface water coverage, population density, and
median household income (also used is are generated
random effects for 2015).
Figures 6 and 7 compare observed and forecasted

Ehrlichia seroprevalences during 2015. The correlation
between the two maps is 0.97 (this is a weighted correl-
ation computed according to (13), where ns denotes the
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Fig. 5 County-by-county observed 2015 annual average temperatures (°F)
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number of tests performed within each county during
2015) and indicates significant skill in forecasting Ehrli-
chia seroprevalence in dogs one year in advance. One
can get an idea where Ehrlichia seroprevalence is fore-
casted to be higher/lower than average by comparing
Figs. 2 and 7. Figure 8 presents our Ehrlichia forecast
for 2016 (this uses all data and factors from 2011–
2015). When 2016 concludes, a future study will com-
pare our current forecast with actual data.

Discussion
In this paper, the first Bayesian approach to forecasting
and inference for canine Ehrlichia seroprevalence, in the
absence of detailed information on vector ecology, was
made. While vector factors such as distribution and abun-
dance are no doubt important, annual counts of all pos-
sible vector populations are currently economically and
logistically infeasible to collect. Such data deficiencies will
likely continue to hinder development of dynamic micro-
scale vector-borne disease models, necessitating develop-
ment of novel approaches to disease surveillance. As such,
we have developed a model for forecasting spatial and
temporal patterns of risk of exposure to Ehrlichia spp.
based on canine seroprevalence data. Data used in this
study indicate exposure to Ehrlichia spp. [19], but

unfortunately lack the detailed molecular assessment
that would allow species-level identification. Also, our
data are obtained from a commercial diagnostic lab to
which veterinarians had submitted samples, and as such,
these dogs were acquiring veterinary care. This suggests
that our data are a conservative estimate of the prevalence
in domestic dogs because dogs at the highest risk of tick
exposure would be dogs that receive no veterinary care,
those from lower socioeconomic families, or are owned by
clients who refuse these additional tests during well visits.
Additionally, a lack of education of tick-borne pathogens
may limit testing that veterinarians request; however, these
tests are often run during routine heartworm testing so this
latter issue is likely a minimal concern. Despite these limi-
tations, these data are acquired on a monthly basis [9], pro-
viding a robust and timely source of information about the
dynamic change of canine Ehrlichia spp. seroprevalence
across the contiguous US, and holds promise for longitu-
dinal studies to best understand the dynamic nature of
vector-borne disease over time. From five years of histor-
ical diagnostic tests, our data show that a Bayesian model
can capably quantify Ehrlichia seroprevalence, which ul-
timately will support qualitative decision-making and sur-
veillance in disease management and response. When
comparing actual to forecasted Ehrlichia seroprevalence in
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Fig. 6 Observed Ehrlichia seroprevalence in domestic dogs for 2015
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2015, a weighted correlation of 0.97 was achieved, demon-
strating significant predictive skill. In the future, we hope
to gauge the effectiveness of interventions designed to re-
duce the occurrence of ehrlichiosis.
Of the eight factors evaluated as infection drivers, in-

creasing annual temperature, percentage forest coverage,
and percentage surface water coverage were deemed to
increase prevalence, and increasing population density
and median household income act to decrease preva-
lence. In general, these results support the presumption
that increasing urbanization would decrease appropriate
tick habitat. These factors also would potentially impact
white-tailed deer, the primary vertebrate wildlife reser-
voir hosts of E. chaffeensis and E. ewingii; however, they
are adaptable and do well across a range of urbanization
other than highly urban. Domestic dogs, the natural host
of E. canis and also long-term hosts for E. ewingii [31],
would be present across all of the urbanization zones,
but more rural or suburban households are likely to have
outdoor dogs which would have a higher risk of tick ex-
posure. Also, most of these factors are similar to those
judged influential in the incidence of human monocytic
ehrlichiosis and Rocky Mountain spotted fever [32, 33].
Interestingly, ambient humidity was not judged to be a
significant factor in our model (in contrast to [33] for

human monocytic ehrlichiosis, by [32] for Rocky Moun-
tain spotted fever cases, and by [34] for E. chaffeensis ex-
posure in white-tailed deer). The statistical methods
utilized in the three aforementioned studies, along with
their spatial scales, are definitively different than those
of our study. Despite these differences, the contrasting
results are more likely explained by the impact of forest
coverage and resulting leaf litter layer on the ability of
Amblyomma americanum ticks, the vector of E. chaf-
feensis and E. ewingii to undergo interstadial develop-
ment in the environment [35]. Moreover, the logistic
regression analysis for prevalence of antibody to Ehrli-
chia in deer [34], authors found that relative humidity
was only significant for the eastern US and only during
the summer months which corresponds with the spatial
and temporal activity of A. americanum. On a local or
regional scale, relative humidity may have been included
in models, but humidity is likely associated with other
factors already included in our model. Percentage forest
coverage was judged as a significant factor of Ehrlichia
seroprevalence in our model. We consider this to be im-
portant because the interstadial development of ticks
vectors of E. ewingii and E. chaffeensis occurs within leaf
litter refuges. Therefore, the rate of tick development is
less likely to change in response to short term variability
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Fig. 7 Forecasted Ehrlichia seroprevalence in domestic dogs for 2015

Liu et al. Parasites & Vectors  (2017) 10:138 Page 11 of 14



in ambient humidity, but rather by the presence or ab-
sence of refuge habitat conducive to tick survival [36].
Ultimately, aggregating factors into yearly summaries, as
is necessary for our analysis, may hide the association
between factors previously purported to influence tick
populations (e.g. annual precipitation and humidity).
As previously discussed, canine ehrlichiosis is well-

recognized as endemic in much of the southern half of
the US, including the Southeast, Midwest and Mid-
Atlantic states. The Ehrlichia seroprevalence forecast for
2016 in Fig. 8 suggests some changes in local prevalence.
The forecast suggests an increase in prevalence through-
out southern Indiana and Ohio, and an increased preva-
lence in central South Carolina, central Georgia and
northern Florida. This coincides with recently reported
increases in the distribution of A. americanum, an im-
portant vector of some Ehrlichia spp. in Indiana and
Ohio [35, 36]. Although this tick species is generally
widespread in South Carolina, Georgia and Florida, our
2016 forecasted increase may be due to climate-related
increases in tick abundance. In the western US, the fore-
cast predicts increased prevalence in western Texas, east-
ern Arizona, and eastern New Mexico, and encroachment
into southern California. In these regions, E. canis is the
predominant species associated with canine ehrlichiosis

and the predicted increases may relate to the changing
ecology of R. sanguineus in the region or some other
unknown factor. In recent years, an increase in Rocky
Mountain spotted fever in humans and dogs following
exposure to Rickettsia rickettsii transmitted by R. san-
guineus has been reported in Arizona [37–40]. These
predicted changes motivate an increased dialog be-
tween pet owners and veterinarians to enhance timely
diagnosis and year-round use of tick preventive.
Though the proposed technique could be used to con-

struct long-term forecasts, caution should be taken. In
particular, our approach makes use of forecasted values
of the significant factors, with some factors being as-
sumed to be static throughout time (e.g. forestation and
surface water coverage). This assumption is reasonable
in the short-term, but would obviously be problematic
over a much larger time span, e.g. twenty to fifty years.
Moreover, in general, when forecasting future trends one
should be cautious of long-term forecasts, due to pos-
sible violations of assumed model forms not apparent in
the available data, e.g. median household income is
increasing/decreasing linearly throughout time. Thus,
we promote the use of our approach to provide only
short-term forecasts of spatial trends in Ehrlichia spp.
seroprevalence.
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Fig. 8 Forecasted Ehrlichia seroprevalence in domestic dogs for 2016
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Finally, an association between canine Ehrlichia sero-
prevalence and human ehrlichiosis is gaining appreci-
ation by the Centers for Disease Control and Prevention.
As discussed in a 2016 Morbidity and Mortality Weekly
Report [41], dogs are frequently exposed to ticks due to
their close contact with the environment and are suscep-
tible to infections with many of the same tick-borne
pathogens as humans, including R. rickettsii, E. chaffeen-
sis, E. ewingii and A. phagocytophilum. Further, the CDC
recognizes that “tick-infested dogs can transfer ticks dir-
ectly to humans during interactions and serve as trans-
port hosts, carrying ticks in and around dwellings where
the ticks can then transfer to the human occupants”.
The CDC recommends physicians question patients
about contact with pets, especially dogs, and a history of
tick attachment or recent tick removal from pets when
assessing human exposure. Finally, clustering of tick-
borne diseases is common, and infection with Ehrlichia
species and several other vector-borne pathogens such
as Rickettsia and Bartonella have been concurrently ob-
served in humans and pet dogs [42–44]. Given that the
majority of canine seroreactivity to Ehrlichia spp. is spe-
cific for E. ewingii and E. chaffeensis [7], communication
between veterinarians and physicians is of critical im-
portance when zoonotic diseases are suspected.

Conclusions
We provide the first report of a Bayesian approach to
forecasting and inference for canine Ehrlichia seropreva-
lence, in the absence of detailed information on vector
ecology. The information provided promotes a better
understanding of the expansion of Ehrlichia spp. beyond
their accepted endemic range, or in some regions a dy-
namic change from historical average prevalence. The
forecast can potentially inform public or veterinary health
about Ehrlichia spp. in their area as well as information
regarding the possible consequences of ecological changes
on the range and prevalence of Ehrlichia spp. infections.
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