
Abstract
Lyme disease (LD) is the most common vector-borne disease

in the United States. Early confirmatory diagnosis remains a chal-
lenge, while the disease can be debilitating if left untreated.
Further, the decision to test is complicated by under-reporting, low
positive predictive values of testing in non-endemic areas and
travel, which together exacerbate the difficulty in identification of
newly endemic areas or areas of emerging concern. Spatio-tempo-
ral analyses at the national scale are critical to establishing a base-
line human LD risk assessment tool that would allow for the
detection of changes in these areas. A well-established surrogate
for human LD incidence is canine LD seroprevalence, making it a
strong candidate covariate for use in such analyses. In this paper,
Bayesian statistical methods were used to fit a spatio-temporal
spline regression model to estimate the relationship between
human LD incidence and canine seroprevalence, treating the latter
as an explanatory covariate. A strong non-linear monotonically
increasing association was found. That is, this analysis suggests
that mean incidence in humans increases with canine seropreva-
lence until the seroprevalence in dogs reaches approximately 30%.
This finding reinforces the use of canines as sentinels for human
LD risk, especially with respect to identifying geographic areas of
concern for potential human exposure.

Introduction
Lyme disease (LD), caused by the spirochete Borrelia

burgdorferi, remains the most commonly reported vector-borne
disease in the contiguous United States (US) (Mead, 2015;
Rosenberg et al., 2018). Borrelia burgdorferi is transmitted
among vertebrate host species by ticks of the genus Ixodes, with
both humans and dogs as incidental hosts (Lane et al., 1991).
Although neither humans nor dogs are significant in the mainte-
nance of the pathogen and the subsequent transmission to other
ticks (Mather et al., 1994), both species can suffer clinical conse-
quences as a result of infection. Early infection in humans often
presents with erythema migrans (red rash) and flu-like symptoms.
As the infection becomes disseminated in the body, clinical signs
associated with the nervous system, heart and joints may manifest
(Steere, 2001). With the exception of erythema migrans, the clin-
ical presentation in dogs is similar involving fever, lethargy,
arthritis, joint swelling and lymphadenopathy (Little et al., 2010).
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Cases affecting the heart, kidneys and the nervous system have
been reported, but these manifestations are not commonly reported
(Littman et al., 2006; Little et al., 2010; Detmer et al., 2016). The
potential severity and chronicity of LD, in humans motivates the
need for an accurate understanding of its incidence and distribu-
tion, with the main objective being to facilitate early diagnosis and
allocation of educational resources necessary for disease preven-
tion.

The Centers for Disease Control and Prevention (CDC) in the
US recognizes standard 2-tiered testing (STTT) as the gold stan-
dard for confirmatory diagnosis of LD recommending its use since
1995. The first-tier STTT utilizes an immunofluorescence assay or
enzyme immunoassay that, when positive or equivocal, should be
followed by a second-tier immunoblot (IgM and/or IgG) test
(Schriefer, 2015). Current recommendations to initiate STTT are
driven by pretest probability in the clinical setting, with exposure
history being a critical factor in deciding to test (Moore et al.,
2016). Despite human LD being notifiable in the US, under-report-
ing of infection has been cited as a concern (Nelson et al., 2015;
Tseng et al., 2015; Moore et al., 2016; White et al., 2016), most
notably in paediatric patients (White et al., 2016). Under-reporting
is common in most passive infectious disease surveillance systems,
particularly when only high-risk regions are studied, and data col-
lections are not representative of the entire country. Surveillance of
human LD is further complicated by the non-specific nature of
some clinical symptoms and the pitfalls of STTT (Moore et al.,
2016). The end result has been a reported potential 3- to 12-fold
discrepancy ratio between the number of CDC-confirmed cases
and the number of infections actually occurring in the population
(Hinckley et al., 2014; Nelson et al., 2015). Furthermore, this
under-reporting may delay recognition of newly endemic regions.

Domestic dogs can serve as a proxy for the risk of exposure to
infected ticks for humans. Although the risk of exposure may vary
between humans and dogs, an infected dog has typically been
exposed to all the necessary conditions for transmission of the
pathogen to an incidental host, including humans. These factors
include those associated with the vector such as density of infected
nymphs (Pepin et al., 2012; Eisen et al., 2016b), presence of reser-
voir and maintenance hosts (Ley et al., 1995; Schauber et al.,
2005; Kilpatrick et al., 2014), climate (Schauber et al., 2005;
Moore et al., 2014; Watson et al., 2017), landscape and environ-
ment (Ley et al., 1995; Pepin et al., 2012; Tuite et al., 2013;
Seukep et al., 2015; Walter et al., 2016), demographics and socioe-
conomics (Tuite et al., 2013; Seukep et al., 2015) and geographical
location (Tuite et al., 2013). The use of pathogen exposure in dogs
as an indicator of human incidence has been shown to be sound in
several small-scale studies (Lindenmayer et al., 1991; Rand et al.,
1991; Guerra et al., 2001; Johnson et al., 2004; Duncan et al.,
2005; Stone et al., 2005) and more recently at the national level
(Mead et al., 2011).

While the aforementioned studies are supportive of the concept
that canine seroprevalence can be used to assess risk of human
exposure to infected ticks, their design and methodology limit
actionable decision-making by human healthcare providers. To the
point, analyses in these prior studies focused on either correlation
statistics or employed simple linear regression techniques to
explore associations. Importantly, previous analyses fail to allow
for a thorough examination of the relationship at low canine sero-
prevalence. In particular, the assumption of a linear association
leads to inaccurate conclusions (e.g. over- and under-estimation)
and fails to describe the dynamic nature of LD over the past decade

in which human cases are rising in numbers and expanding in geo-
graphic distribution (Kugeler et al., 2015), most notably in transi-
tional regions bordering endemic areas of disease. Dynamic
changes in LD have been associated with changes in the range of
I. scapularis (Eisen et al., 2016a); however, annual assessment of
vector and disease distribution remain logistically and financially
unfeasible. Dogs may be a more sensitive marker of the presence
of B. burgdorferi at the leading edge of these changes (Mead et al.,
2011) and an understanding how their exposure relates to human
cases is therefore of significance. In light of recent observations,
this study updates, refines and hones an analysis that was pub-
lished by Mead and colleagues performed at the state and county
level using canine data from 2001-2006 (Mead et al., 2011).
Presented here are data from 2012 through 2016, a more contem-
porary observation of the current state of Lyme disease in the US.
In addition, the canine test is used more routinely during this time
period compared to the early 2000s, providing a broader sample
population in terms of geography and number of dogs tested (over
16 million, compared to the approximately 1 million previously
considered).

Data availability has also improved the scope for human LD
diagnosis in the last 5 years, in part due to growing awareness of
disease incidence and testing (Rosenberg et al., 2018). Recent spa-
tial analysis revealed clusters of human cases near the state borders
in Maryland, Pennsylvania, Virginia and West Virginia, regions
that border established endemic regions of LD (Hendricks et al.,
2017). These researchers highlight the need for exploratory
surveillance approaches to mitigate the extent at which state level
reporting affects accurate estimation of LD progression. We simi-
larly reasoned that exploratory spatial data analyses are necessary
for public health professionals on a national level to establish base-
line risk assessment and initiate surveillance to monitor changes in
LD occurrence. To that end, we estimated the relationship between
canine B. burgdorferi seroprevalence (Watson et al., 2017) and
human LD incidence (Nelson et al., 2014; NNDSS, 2017) using
updated information and a spatio-temporal model that can quantify
both linear and non-linear associations, thus avoiding erroneous
assumptions regarding the form of the relationship. By demonstrat-
ing the strength of the association, particularly in areas of low
canine seroprevalence, we can open the discussion on the utility of
canine data as an explanatory covariate in spatial analyses that
could be used to guide pretest probability and evidence-based test-
ing decisions and identify areas of concern to facilitate public
health awareness and educational campaigns.

Materials and Methods

Data structure
The observed canine data consist of test results from

16,595,623 B. burgdorferi modified enzyme-linked immunosor-
bent assays (ELISAs) performed from 2012 to 2016 in the contigu-
ous US based on the following assays: SNAP®4Dx® and
SNAP®4Dx® Plus (IDEXX Laboratories, Inc., Westbrook, ME,
USA) available from the Companion Animal Parasite Council
website (CAPC, 2017). SNAP®4Dx® Plus is a combination test
that detects antibodies against B. burgdorferi, Anaplasma spp.,
Ehrlichia spp., and antigen from Dirofilaria immitis. The county in
which the veterinary clinic is located is reported with the test
result. These data are collated through the use of software that con-
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nects clinics to IDEXX, and all test results (negative or positive)
captured by the network are added to the database on a monthly
basis. The ELISA is a qualitative test that detects antibodies that
are seroreactive to the C6 peptide which is based on a region of the
outer membrane protein (VlsE) of B. burgdorferi (Stillman et al.,
2014) and has a reported sensitivity and specificity of 96.7% and
98.8%, respectively. Similar to human infection, detection of sero-
conversion to C6 antigen in dogs is indicative of disseminated
infection (Bacon et al., 2003; Nyman et al., 2006; Levy et al.,
2008; Wagner et al., 2012; Embers et al., 2016). Seroconversion
can occur as early as 3-4 weeks post-infection if the bacterial bur-
den is high (Wagner et al., 2012); however, in the data used in this
study, the time since infection was not known and cannot be deter-
mined from the test results. After treatment, antibodies will decline
over time (Levy et al., 2008), but persist for months (or years) in
untreated animals. It is also important to note that the C6 ELISA
does not detect antibodies to current vaccines (Ting Liang et al.,
2000), so vaccinated dogs will not test positive with the exception
of prior infections or vaccine failure and subsequent disseminated
infection. 

The predominate population represented by the data presented
here was that of owned dogs brought to a veterinarian for care. The
reason for testing was not provided and may include wellness
screening, suspicion of disease (e.g., heartworm disease, Lyme dis-
ease, anaplasmosis, ehrlichiosis), or monitoring response to thera-
py. Other demographic details, such as age, sex, or breed, were
also not available. Travel and testing history were also not avail-
able, so location of exposure is not known. At the population level,
it is reasonable to make the assumption that most dogs were

exposed within the county and during the year of testing. Some
observations may, however, have been misclassified by county or
year. It is expected that there are few of these misclassifications
with most representing animals that could have been exposed in a
neighbouring county and/or previous year. Thus, given the strong
spatio-temporal dependence, it is expected that these misclassifica-
tions will not unduly influence the analysis.

Overall, 1,062,524 tests were positive, yielding an empirical
seroprevalence of 6.40%. For the purposes of fitting the model and
matching the spatio-temporal granularity of the CDC data, the
canine test data were aggregated by county and by year. Figure 1
depicts the overall empirical seroprevalence over the 2012-2016
time period for each county. The second data set consisted of con-
firmed and probable human cases of LD reported by the CDC from
2012 to 2016 at the county level (CDC, 2017). All tests during this
period use the same case definition, which is available on the CDC
website (NNDSS, 2017). The overall incidence per 100,000
humans by county for the 2012-2016 time period are depicted in
Figure 2.

Statistical models
Our statistical analysis proceeded in two steps. First, a

Bayesian spatio-temporal model was fitted to the canine test data
to obtain seroprevalence estimates at each county throughout the
contiguous US at all years of interest. The second step analyzed the
human incidence data via a different model using the seropreva-
lence estimates from the first step as an explanatory factor. The
overarching goal of this analysis was to accurately quantify the
association between human incidence and canine exposure preva-

                                                                                                                                Article

Figure 1. Average empirical canine Borrelia burgdorferi seroprevalence for 2012-2016. The overall seroprevalence for the five-year peri-
od is displayed for each county reporting data.

                                                                              [Geospatial Health 2019; 14:750]                                                           [page 113]

gh-2019_1.qxp_Hrev_master  10/05/19  11:35  Pagina 113

Non
-co

mmerc
ial

 us
e o

nly



lence. In the first step, we used the Bayesian hierarchical spatio-
temporal model, the salient features of which have been described
by Banerjee et al. (2014) and Watson et al. (2017). Let Yst and nst
denote the number of positive and total number of canine tests in
county s during year t, respectively, for counties s ∈ {1, … , S} and
years t ∈ {1, … , T}. Our step one model was a space-time Poisson
regression:Yst | 𝑛st , 𝑝st ~ Poisson {𝑛st𝑝st},                                               Eq. 1log {𝑝st} = β0 + ξst                                                                  Eq. 2
where β0 is an intercept parameter and ξst a spatio-temporal ran-
dom effect for county s at time t. Here 𝑝st is the seroprevalence of
B. burgdorferi antibodies in dogs in county s at time t. The spatio-
temporal dependence in the data are described through a multivari-
ate autoregressive model obeying:ξ1 = ϕ1;                                                                                  Eq. 3ξt = φξt-1 + ϕt, for t ∈ {2, … , T};                                          Eq. 4ϕt ~ CAR (τ2; ρ), for t ∈ {1, … , T}                                        Eq. 5
where ξt = (ξ1t, …, ξSt)’ and ϕt = (ϕ1t , … , ϕSt)’ are random vectors
(’ denotes matrix transpose). In this model, the correlation param-

eter φ lies between (–1,1) and controls the degree of temporal cor-
relation in the model. Values of this parameter near 1(–1) indicate
strong positive (negative) temporal correlation and values near
zero indicate weaker temporal correlation. Similarly, the parameter
ρ controls the spatial correlation and is constrained to lie between
(0,1). Values of this parameter close to unity indicate strong posi-
tive spatial dependence, while values close to zero indicate weak
spatial correlation. Eq. 5 specifies that ϕt are independent and
identically distributed (iid) random vectors, whose distribution fol-
lows a conditional autoregressive (CAR) model. See Besag (1974),
Banerjee et al. (2014) and Watson et al. (2017) for details and the
statistical properties of CAR schemes. To complete the Bayesian
model formulation, the following prior distributions were used:β0 ~ N (0,1000),                                                                    Eq. 6φ ~ Uniform (–1,1);                                                             Eq. 7ρ ~ Uniform (0,1);                                                                 Eq. 8τ-2 ~ Gamma (0.5,0.05).                                                        Eq. 9

These specifications put a diffuse prior on β0; i.e. the prior
exerts little influence on the posterior distribution and inferences
are based primarily on the data. Uninformative (uniform) prior dis-
tributions were used for φ and ρ for the same reasons. The prior

                   Article

Figure 2. Average empirical human Lyme disease incidence per 100,000 population by county for 2012-2016. County-level data are
publicly available from the Centers for Disease Control and Prevention. The overall incidence for the five-year period is displayed for
each county reporting data.
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for τ-2 was chosen to be uninformative with statistical conjugacy
(Banerjee et al., 2014) in mind, which facilitates computation.

The unknown parameters in the model were β0, φ, ρ, τ-2, andξst, for s ∈ {1, … , S} and t ∈ {1, … , T}. A posterior sampling algo-
rithm was developed, in the usual statistical fashion, to sample all
model parameters and random effects from their posterior distribu-
tions. This Markov chain Monte Carlo (MCMC) sampling algo-
rithm uses a combination of Gibbs and Metropolis-Hastings steps.
To complete model fitting, Yst for counties not reporting test results
were treated as latent variables and were sampled along with the
other model parameters. The posterior sampling algorithm was
implemented using R and C ++. For more information on Bayesian
models and MCMC methods, see Gelman et al., 2014. In what fol-
lows, an estimate, denoted by  ̂pst,of 𝑝st was obtained as the sample
mean from 𝐺 posterior samples

denoting the 𝑔th posterior 
of β0 and ξst, respectively. The Bayesian spatio-temporal 
model for the second step of this analysis is similar to the first
model, but has several key differences. Let Xst and 𝑚st denote the
number of CDC-confirmed human Lyme cases and the population
size of county s during year t, respectively, for counties s ∈ {1, …, S} and years t ∈ {1, … , T}. Our model for this step was another
Poisson regression:Xst | 𝑚st , 𝑟st ~ Poisson {𝑚st 𝑟st},                                            Eq. 10log{𝑟st} = 𝛾0 + 𝑔(  ̂pst)+ 𝛿st                                                    Eq. 11
where 𝛾0 is an intercept parameter, 𝑔(·) an unknown function and𝛿st a spatio-temporal random effect. In the above, 𝑟st, is the risk of
a human Lyme disease case in county s at time t. Specifications for
the intercept and spatio-temporal random effects are as described
for the step one model. The key quantity here was the function𝑔(·), as this quantifies the association between canine and human
risk. One may posit that 𝑔(𝑝) is non-decreasing in 𝑝 ∈ [0,1]; i.e.
the mean incidence in humans increases with canine seropreva-
lence. The unknown function in Eq. 11 represents an infinite
dimensional parameter. To reduce the dimensions of the problem,
our approach used regression splines to approximate 𝑔(·), a classic
statistical practice (Ruppert et al., 2003). In particular, the mono-
tone splines of Ramsay (1988) were utilized:

                     
Eq. 12

where the I𝓁 (·) are integrated spline basis functions and the 𝛾𝓁 are
spline coefficients. Once a user specifies the degree of the polyno-
mials and the knot set, the L basis functions are fully determined;
see Ramsay (1988) for further details. The degree controls function
smoothness, with adequate smoothness typically being attained
with degree 2 or 3. The knot set controls the flexibility of the
approximation, with more knots giving more flexibility to adapt to
the data. This makes knot selection slightly more tenuous as too
few (many) knots may lead to under- (over-) fitting problems. A
common statistical approach used to circumvent this problem
involves first specifying a large collection of knots and then regu-
larizing the spline coefficients; i.e., the non-useful spline coeffi-
cients are drawn toward zero during the estimation procedure.
Proceeding in this fashion guards against both over- and under-fit-

ting. To complete the model formulation, the priors in Eq. 6 need
to be specified. To perform regularization, the generalized double
Pareto shrinkage prior in Armagan et al. (2013) was chosen for the𝛾𝓁's. The degree of the regression splines was set to be 3 and 5
equally spaced knots were specified between the minimum and
maximum of the   ̂pst ’s. Model fitting and parameter estimation was
conducted in the same fashion as in the step one model. The model
estimates are displayed as maps for ease of interpretation after
Kriging (implemented in ArcGIS using the default parameters).
Kriging is a spatial interpolation method, in which the values are
modelled by a Gaussian process; for further details see Deutsch
and Journel (1992). To demonstrate that the model and methodol-
ogy were robust to spurious outcomes in the canine data (likely
attributable to travel-related exposure) observed in non-endemic
regions, the model was also fitted using a subset of the described
data. This subset included only states classified as high incidence
by the CDC (CDC, 2017) and those immediately surrounding:
Maine, New Hampshire, Vermont, Massachusetts, Connecticut,
Rhode Island, New York, New Jersey, Pennsylvania, Delaware,
Maryland, Virginia, West Virginia, North Carolina, Tennessee,
Kentucky, Ohio, Indiana, Michigan, Illinois, Iowa, Wisconsin,
Minnesota, North Dakota, South Dakota and Missouri.

Results
By fitting the model in Eq. 1, two tasks were accomplished.

First, canine seroprevalence estimates at every county and year can
be obtained, even if a county did not report data during some years.
Second, the effect of small sample sizes can be mitigated; i.e. pat-
terns attributable to small sample sizes will not unduly influence
results. For example, sporadic positive cases (likely attributable to
travel) observed in non-endemic areas that report few test results.
Figure 3 depicts these estimates after Kriging, averaged over the
five study years.

Figure 4 presents the estimated association between canine
seroprevalence and reported human incidence along with 95%
point-wise credible intervals for all states (blue line) and selected
high-incidence and neighbouring states (black line). The estimated
association is highly non-linear. In particular, as canine seropreva-
lence increases from 0% to nearly 10%, human incidence rises
quickly. In contrast to a prior study (Mead et al., 2011), a strong
association was observed below 5% seroprevalence, as exhibited
by the narrow credible intervals. Between seroprevalence of 10%
and 30%, the human incidence still rises with increasing sero-
prevalence, but at a slower rate. The association appears to flatten
completely beyond 30%, with no further increase in human inci-
dence. Perhaps most important is the similarity in the two curves,
which demonstrates that the model and the methodology are robust
to spurious outcomes in the canine data that might be present in

                                                                                                                                Article

Table 1. Estimates of parameters.

Parameter                     Estimate                        95% Credible  
                               (posterior mean)                      Interval

β0                                                 -12.506                                  (-12.594, -12.411)
φ                                                    0.877                                        (0.852, 0.904)
ρ                                                    0.999                                        (0.999, 1.000)
τ -2                                                  0.814                                        (0.762, 0.872)
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non-endemic regions. Table 1 provides point estimates and 95%
credible intervals for the other model parameters.

County level estimates of the number of cases per 100,000
humans can be obtained from the model for each considered year.
Figure 5 shows these estimates as the average of the number of
cases per 100,000 humans after Kriging. From this map, the states
that contain mostly high-incidence areas (10 cases or more per
100,000 humans) were: Minnesota, Wisconsin, Maine, New
Hampshire, Vermont, Massachusetts, New York, Connecticut,
Rhode Island, New Jersey, Pennsylvania, Maryland, Delaware and
Virginia. Bordering states that contain some areas of high-inci-
dence included the Upper Peninsula of Michigan, Iowa, Illinois,
West Virginia and North Carolina, while North Dakota and Ohio
had the leading edge of high-incidence on their eastern borders.
The remainder of the country was found to have low incidence
(<10 cases per 100,000 humans) but areas with slightly increased
incidence (>1 cases per 100,000 humans) were seen on the leading
edges of the endemic regions: the north-western and south-western
corners of Indiana and Michigan, respectively, and along the east-
ern Lake Michigan shore, most of North Carolina and along the
Atlantic coast into South Carolina, Northern California and
Southern Oregon. Smaller foci were observed in Florida, Southern
Kentucky and at the border of Kentucky and Indiana.

Discussion
This paper quantifies the association between canine sero-

prevalence and human LD incidence within the contiguous US at

the county level. The relationship appears well described by a
monotone increasing function (denoted by 𝑔 previously). A spatio-
temporal spline regression model was used to avoid making
assumptions about the form of the association. That is, splines are
very flexible functions which allow the model to fit the data at all
levels of the explanatory covariate, capably illuminating any
underlying relationship (Howe et al., 2011). Importantly, regular-
ization was used to prevent the spline model from over-fitting,
while spatio-temporal random effects were utilized to account for
unexplained spatio-temporal autocorrelation. The estimated asso-
ciation displayed in Figure 4, is our primary result. This analysis
demonstrates that mean human incidence monotonically increases
as dog seroprevalence increases from 0% to 30%. Notable in this
analysis is the narrow credible intervals at low seroprevalence,
indicating low variability in the model estimates and a strong asso-
ciation between seroprevalence and human incidence. If dogs were
unreliable sentinel for human LD, this interval would be wider, and
the association would be interpreted as weaker. Above 30% canine
seroprevalence, mean human incidence seems to plateau. The rea-
son for this plateau cannot be elucidated from this study alone and,
in part, may be caused by geospatial limitations: there are very few
regions of the US where canine seroprevalence is >30%, and with
limited data points it is difficult to fully describe the association
with human incidence at higher seroprevalence. Beyond these lim-
itations, differential behaviours in hyperendemic counties com-
pared to other regions of the country exist that may impact data
acquisition, including but not limited to preventative care practices
in both humans and dogs. 

Estimates derived from Eq. 11 are displayed in Figure 5, which
accurately describes incidence while adjusting for the spatial and

                   Article

Figure 3. Model-estimated canine seroprevalence, averaged for 2012-2016.
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temporal random effects unique to each county and demonstrates
the ability of seroprevalence to be used as a covariate for spatial
models of human incidence. The difference between the model-
based estimates and the observed cases of human Lyme disease
can be seen in Figure S1 (in the Appendix). The finding that the
mean human incidence increases with canine seroprevalence and
further that the association is strong at low seroprevalence levels
suggest that future research could be aimed at using canine data to
monitor areas of transition between endemic and non-endemic
regions. This and a previous study by our group (Watson et al.,
2017) demonstrate that the widespread availability and timeliness
of canine data provides a consistent and spatially uniform surveil-
lance tool in comparison to human data, and therefore enhances the
ability to detect areas where B. burgdorferi may be diagnosed
(either due to travel-acquired infections or due to an area of new
transmission of the pathogen). If canine seroprevalence continues
to increase, these data would suggest a need to examine the ticks
or human case data to determine if endemic transmission was
occurring. Future research should focus on the use of a combina-
tion of canine data with human case reports and entomological
data in defining emergent endemic counties and thus guide pretest
probability. For this, a stronger understanding of which specific
risk factors influence the association at the county level is needed
(Eisen et al., 2003).

Our model does not predict areas of temporal emergence and

                                                                                                                                Article
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Figure 5.  Smoothed map depicting the average estimated counts for human Lyme disease cases per 100,000 population based on canine
B. burgdorferi seroprevalence.

Figure 4. Estimated association between human Lyme disease
incidence and canine B. burgdorferi seroprevalence. The solid
curves depict the estimated 𝑔(·), with the dashed lines providing
95% point-wise credible intervals. The measure is unit-less, but
represents the logarithm of the proportion of the county’s risk
(rst) to the county’s baseline risk (𝑟st0 = γ0 + δst) at a given canine
seroprevalence level, i.e. log (𝑟st/𝑟st0) = g( p̂   st ). The blue line depicts
all 48 contiguous states, while the black line depicts the following
high-incidence and neighbouring states: Maine, New Hampshire,
Vermont, Massachusetts, Connecticut, Rhode Island, New York,
New Jersey, Pennsylvania, Delaware, Maryland, Virginia, West
Virginia, North Carolina, Tennessee, Kentucky, Ohio, Indiana,
Michigan, Illinois, Iowa, Wisconsin, Minnesota, North Dakota,
South Dakota and Missouri.
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the results should not be interpreted as such. Time trends were not
included in the model because of the short five-year study period.
In light of this limitation, it is currently recommended that canine
data be examined annually. Limitations do exist in the data that
preclude simple explanations of the association. These include
movement of dogs (Millen et al., 2013) that does not follow that of
humans (i.e. shelter and rescue dogs); non-human biting
B. burgdorferi vectors such as I. affinis that may bite dogs; cross-
reactivity with other borrelial organisms; and false positive test
results. Importantly, our model mitigates these factors, as can be
seen by comparing the estimated human incidence map (Figure 5)
to the observed incidence (Figure 2). However, not all travel-relat-
ed positive tests should be disregarded. For example, despite
Florida being a non-endemic state, many positive tests are report-
ed, and it is easy to conjecture that these are a result of travel
between Florida and endemic regions. Since pets do not travel
alone, if several canine cases are present within a county, it sug-
gests that the population of that county has some behaviour (travel,
camping, hiking) that exposes pets, and therefore likely their own-
ers, to the risk of LD. Using rickettsial disease as an example of a
vector-borne disease in which illness in dogs can precede that of
their owners (Elchos and Goddard, 2003), monitoring of canine
LD prevalence at the county level (CAPC, 2017) and enhanced
communication between veterinarians and human health care
providers would be optimal when LD is suspected.

The validation of the strength of the association between
canine and human LD opens the door to focused studies in areas of
concern where the presence of B. burgdorferi in ticks is difficult to
ascertain and sampling humans is expensive and time consuming.
Future considerations will include models that describe the emer-
gence of risk in non-endemic areas. Enhanced sampling of dogs,
both owned and non-owned, in combination with the emergence of
novel human LD diagnostics (Wormser et al., 2013; Magni et al.,
2015; Molins et al., 2015; Embers et al., 2016) that improve upon
STTT, have the potential to drive further improvements of nation-
al-level risk assessment tools for public health promotion. Data
could also be used to guide physicians toward evidence-based use
of protective vaccines as they emerge in the marketplace (Izac et
al., 2017), with an emphasis on high-risk individuals (children 5-9
and adults 45-59 years of age (CDC, 2017)) and/or potential trav-
el-related exposure. This would ultimately contribute to reducing
the financial burden placed on the US health care system by LD
(Adrion et al., 2015).

Conclusions
Lyme disease can be difficult to diagnose, and chronic mani-

festations may be severe and debilitating, but it is preventable with
appropriate awareness and protection. The model presented here
quantifies the association between canine seroprevalence and
human LD incidence. Given the availability and timeliness of
canine seroprevalence data, we describe a link to human LD inci-
dence that may ultimately serve as an annual early-warning system
in transitional and non-endemic regions facilitating awareness and
aid in early and accurate diagnosis.
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